
Lecture Notes in Physics 
Editorial Board 

H. Araki, Kyoto, Japan 
E. Brdzin, Paris, France 
J. Ehlers, Potsdam, Germany 
U. Frisch, Nice, France 
K. Hepp, Zfirich, Switzerland 
R. L. Jaffe, Cambridge, MA, USA 
R. Kippenhahn, G6ttingen, Germany 
H. A. Weidenmfiller, Heidelberg, Germany 
J. Wess, Mfinchen, Germany 
J. Zittartz, KGln, Germany 

Managing Editor 

W. Beiglb6ck 
Assisted by Mrs. Sabine Lehr 
c/o Springer-Verlag, Physics Editorial Department II 
Tiergartenstrasse 17, D-69121 Heidelberg, Germany 

Springer 
Berlin 
Heidelberg 
New York 
Barcelona 
Budapest 
Hong Kong 
London 
Milan 
Paris 
Santa Clara 
Singapore 
Tokyo 



The Editorial Policy for Proceedings 

The series Lecture Notes in Physics reports new developments in physical research and teaching - quickly, 
informally, and at a high level. The proceedings to be considered for publication in this series should be limited 
to only a few areas of research, and these should be closely related to each other. The contributions should be 
of a high standard and should avoid lengthy redraftings of papers already published or about to be published 
elsewhere. As a whole, the proceedings should aim for a balanced presentation of the theme of the conference 
including a description of the techniques used and enough motivation for a broad readership. It should not 
be assumed that the published proceedings must  reflect the conference in its entirety. (A listing or abstracts 
of papers presented at the meeting but not included in the proceedings could be added as an appendix.) 
When applying for publication in the series Lecture Notes in Physics the volume's editor(s) should submit 
sufficient material to enable the series editors and their referees to make a fairly accurate evaluation (e.g. a 
complete list of speakers and titles of papers to be presented and abstracts). If, based on this information, the 
proceedings are (tentatively) accepted, the volume's editor(s), whose name(s) will appear on the title pages, 
should select the papers suitable for publication and have them refereed (as for a journal) when appropriate. 
As a rule discussions will not be accepted. The series editors and Springer-Verlag will normally not interfere 
with the detailed editing except in fairly obvious cases or on technical matters. 
Final acceptance is expressed by the series editor in charge, in consultation with Springer-Verlag only after 
receiving the complete manuscript. It might help to send a copy of the authors' manuscripts in advance to the 
editor in charge to discuss possible revisions with him. As a general rule, the series editor will confirm his 
tentative acceptance if the final manuscript corresponds to the original concept discussed, if the quality of the 
contribution meets the requirements of the series, and if the final size of the manuscript  does not greatly 
exceed the number  of pages originally agreed upon. The manuscript should be forwarded to Springer-Verlag 
shortly after the meeting. In cases of extreme delay (more than six months after the conference) the series 
editors will check once more the timeliness of the papers. Therefore, the volume's editor(s) should establish 
strict deadlines, or collect the articles during the conference and have them revised on the spot. If a delay is 
unavoidable, one should encourage the authors to update their contributions if appropriate. The editors of 
proceedings are strongly advised to inform contributors about these points at an early stage. 
The final manuscript should contain a table of contents and an informative introduction accessible also to 
readers not particularly familiar with the topic of the conference. The contributions should be in English. The 
volume's editor(s) should check the contributions for the correct use of language. At Springer-Verlag only the 
prefaces will be checked by a copy-editor for language and style. Grave linguistic or technical shortcomings 
may lead to the rejection of contributions by the series editors. A conference report should not exceed a total 
of 500 pages. Keeping the size within this bound should be achieved by a stricter selection of articles and not 
by imposing an upper limit to the length of the individual papers. Editors receive jointly 3o complimentary 
copies of their book. They are entitled to purchase further copies of their book at a reduced rate. As a rule no 
reprints of individual contributions can be supplied. No royalty is paid on Lecture Notes in Physics volumes. 
Commitment  to publish is made byletter of interest rather than by signing a formal contract. Springer-Verlag 
secures the copyright for each volume. 

The Production Process 

The books are hardbound, andthe publisher will select quality paper appropriate to the needs of the author(s). 
Publication time is about ten weeks. More than twenty years of experience guarantee authors the best possible 
service. To reach the goal of rapid publication at a low price the technique of photographic reproduction from 
a camera-ready manuscript was chosen. This process shifts the main responsibility for the technical quality 
considerably from the publisher to the authors. We therefore urge all authors and editors of proceedings to 
observe very carefully the essentials for the preparation of camera-ready manuscripts,  which we will supply 
on request. This applies especially to the quality of figures and halftones submitted for publication. In 
addition, it might be useful to look at some of the volumes already published.As a special service, we offer free 
of charge ~TEX and TEX macro packages to format the text according to Springer-Verlag's quality require- 
ments. We strongly recommend that you make use of this offer, since the result will be a book of considerably 
improved technical quality. To avoid mistakes and t ime-consuming correspondence during the production 
period the conference editors should request special instructions from the publisher well before the beginning 
of the conference. Manuscripts not meeting the technical standard of the series will have to be returned for 
improvement. 

For further information please contact Springer-Verlag, Physics Editorial Department II, Tiergartenstrasse 17, 

D-69121 Heidelberg, Germany 



Guy Chavent Pierre C. Sabatier (Eds.) 

Inverse Problems 
of Wave Propagation 
and Diffraction 

Proceedings of the Conference 
Held in Aix-les-Bains, France, 
September 23-27, 1996 

~ Springer 



Editors 

Guy Chavent 
INRIA Rocquencourt 
Domaine de Voluceau, BP xo5 
F-78153 Le Chesnay Cedex, France 

Pierre C. Sabatier 
Laboratoire de Physique Math~matique 
Universit~ Montpellier II 
F-34o95 Montpellier Cedex o5, France 

Sponsored by D.R.E.T., U.S.A.F., and THOMSON. Organized by INRIA, and belonging to 
the series "SIAM-GAMM Meetings on Inverse Problems". 

Cataloging-in-Publication Data applied for. 

Die Deutsche Bibliothek - CIP-Einhei tsaufnahme 

Inverse problems of  wave propagation and diffraction : 
proceedings of  the conference, held in Aix-les-Bains,  France, 
September 23 - 27, 1996 / Guy Chavent ; Pierre C. Sabatier (ed.). - 
Berlin ; Heidelberg ; New York ; Barcelona ; Budapest  ; Hong  Kong 
; London ; Milan ; Paris ; Santa C l a r a ,  Singapore ; Tokyo : Springer, 
1997 

(Lecture notes in physics ; Vol. 486) 
ISBN 3-540-62865-7 

ISSN 0075-8450 
ISBN 3-540-62865-7 Springer-Verlag Berlin Heidelberg NewYork 

This work is subj ect to copyright. All rights are reserved, whether the whole or p art of the 
material is concerned, specifically the rights of translation, reprinting, re-use of illustra- 
tions, recitation, broadcasting, reproduction on microfilms or in any other way, and 
storage in data banks. Duplication of this publication or parts thereof is permitted only 
under the provisions of the German Copyright Law of September 9, 1965, in its current 
version, and permission for use must always be obtained from Springer-Verlag.Violations 
are liable for prosecution under the German Copyright Law. 

© Springer-Verlag Berlin Heidelberg 1997 
Printed in Germany 

The use of general descriptive names, registered names, trademarks, etc. in this publica- 
tion does not imply, even in the absence of a specific statement,that such names are exempt 
from the relevant protective laws and regulations and therefore free for general use. 

Typesetting: Camera-ready by the authors/editors 
Cover design: design &production GmbH, Heidelberg 
SPIN: 10550714 55/3144-543210 - Printed on acid-free paper 



Ix 

into the unifying framework of Bayesian estimation, and analyzes the pros 
and cons of each approach on a theoretical level. The  help provided by ap- 
proximate methods in sound scattering problems is demonstrated on a simple 
example and in a few pages by Louis. 

Two papers present complete studies of an obstacle reconstruction prob- 
lem, from the theoretical analysis to the numerical results. The  first one, 
by Rozier, Lesselier, Angell, and Kleinman, handles the case of an obstacle 
immersed in an acoustical wave guide and illuminated by a single harmonic 
source. In this approach, the obstacle boundary is parameterized in polar co- 
ordinates, and the coefficients of this parameterization are estimated by min- 
imizing a two-term objective function that  measures the data  misfit and the 
pressure defect on the obstacle boundary. In the second lecture, by Kleinman, 
Van den Berg, Duch@ne, and Lesselier, the "modified gradient approach" is 
used for solving a variety of obstacle reconstruction problems in the acoustic 
and electromagnetic domains. As in the previous paper, the method is based 
on the minimization of a two-term objective function, but  now, the diffracting 
obstacle is represented by its characteristic function: the numerical unknown 
is therefore a distributed function, so that  this paper could also have been 
presented in Sect. 3 below devoted to scattering by distributed media - but  
as we have said already, topics boundaries are fuzzy! 

Studies of obstacle inverse scattering should also tell us when unique- 
ness, or non-uniqueness, is related to symmetry. Problems of this kind were 
adressed in the books by Colton and Kress, who draw our at tention to Karp 's  
theorem relating bijectively a sound soft spherical obstacle to the invariance 
of far-field amplitude under orthogonal transformations in ]R 3. We are glad to 
be able to publish in the present book a lecture by Ha-Duong which produces 
the widest generalization of Karp's  theorem. 

The remaining lectures deal with more specialized topics on the obstacle 
problem. Labreuche wants to understand the workings of a popular prac- 
tical method of reconstruction based on obstacle resonances (the so-called 
target  signature). He proves that  resonant frequencies and associated eigen- 
functions uniquely determine the obstacle, whereas resonance positions only 
give some size estimates. To our knowledge, this is the first a t tempt  to ap- 
praise the information of target signatures in three-dimensional cases without 
any symmetry  (whereas there have been many in one-dimensional media or 
in spherical, cylindrical, etc., cases). One may object to the lack of refer- 
ences, in this kind of lecture, to real approaches to real data. Overwhelming 
information of this kind is supplied in the paper by Gerard, Guran,  Maze, 
Ripoche, and Uberall on target recognition and remote sensing. In the Haas, 
Rieger, Lehner lecture, the recovery of an obstacle by an adaptive iteration 
is described: dealing with acoustic or electromagnetic scattering, the idea 
is to search a closed boundary along which the tangential component of a 
suitable field "vanishes" in a minimum norm sense. Examples involve reason- 
ably complicated, but  smooth, scatterers. One can consider this lecture as an 



P r e f a c e  

G u y  C H A V E N T  a n d  P i e r r e  C.  S A B A T I E R  

1 I n t r o d u c t i o n  

The  set of lectures published here were all presented at the "Conference on 
inverse problems of wave propagat ion and diffraction", which we organized 
in Aix-les-Bains, France, September 23-27, 1996. 

Let us first express our grat i tude to the meeting scientific commit tee  (see 
the list p. 373), to our sponsors, D ~ l ~ g a t i o n  G@n~rale ~ l ' A r m e m e n t  1 
U .S .  A i r  F o r c e  ( E u r o p e a n  Ofl lce)  2 W h o m s o n - C s f  ( P a r i s ) ,  and, last 
but  not least, to I N R I A ,  who gave us all kinds of valuable help, and, in 
part icular,  tha t  provided by Mrs Marie-Claude Sance. 

Not all the lectures which were presented at the meeting (see the list 
p. 374) are given here - the size of the book was limited! 

Among the lectures proposed by their authors for the proceedings, unfor- 
tunately, we had to discard several excellent ones, either because they were 
less adequate  to the s tudy of "wave propagat ion and diffraction" or because 
they did not contain enough original developments not appear ing elsewhere 
in published papers.  We wish to thank  the "invited lecturers" for their help in 
this selection process, but  of course if there have been some mistakes,  b lame 
us; we apologize. 

The aim of the meeting was to emphasize the three fundamental  steps of 
inverse modeling: modeling the problem, analyzing it, and giving numerical  
solutions. I t  is clear tha t  the lectures are mainly concerned with the two last 
steps: the modeled problem often appears  as the first working assumption.  

1 "Document @tabli en ex@cution du Contrat n ° 95 A 0120 pass@ par la Direction 
de la Recherche et de la Technologie - Direction Scientifique - Section Soutien 
la Recherche". 

2 We wish to thank the United States Air Force European Office of Aerospace 
Research and Development for its contribution to the success of the Conference. 
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Nevertheless, the real progress in this domain over the years is shown in 
all the lectures by the more and more realistic character of solved inverse 
problems, by the caution of authors in using reasonable definitions of stability 
or robustness and in providing examples which rigorously prove the power of 
their methods in real-world problems. One may regret that a dialog between 
the modeling and analyzing of the inverse problem is generally missing. It is 
clear that a standard publication cannot cover it: such a dialog is naturally 
present in syntheses of attempts over several years to solve a problem, but 
syntheses of this kind are rare in a meeting. The cited increase of care for 
realism and rigor is what remains from them in standard papers. 

Let us now go through the present set of lectures. Some of them (in 
particular invited lectures) are more general than others. All of them give an 
appraisal of what can be called the state of art on the two essential steps of 
analyzing and numerically solving the inverse problem. However, one can put 
most papers in one of the two following classes, which have fuzzy frontiers. 

In the first class, authors begin with an exact study of inverse problems, 
i.e., a study starting from supposedly exact data and aiming at exact or 
carefully defined generalized solutions in well defined spaces. After a full 
understanding of the problem on these grounds, i.e., a full understanding 
of strong existence, uniqueness or non- uniqueness conditions for solutions 
and generalized solutions, they are supposed to provide stable and robust 
numerical algorithms for constructing them from real data. If they do it, the 
problem is done, and all questions of interest can be answered. Unfortunately, 
analyses of this class usually do not go very far into the numerical schemes 
and hardly match real-world needs. It is a fact that constructive methods 
used in fine analysis are only a starting point for constructing algorithms 
able to handle real data - and authors are rarely interested by going into 
more details in this direction. 

In the "second class", authors start with a reasonable definition of gener- 
alized solutions as functions which minimize the values ~i of some given cost 
functionals Fi and keep inside a priori bounds the values ~j of some given 
constraints Cj. The real-world "needs" usually require that the e~'s be smaller 
than given values (data errors) and if this condition were enforced, analyses 
of this class would not be essentially different from those of the previous one. 
But since one usually drops any a priori bound on the ei's and only requires 
that these values be minima on a reasonable class of functions, quite new 
features usually appear in analyses of this class: 

1. the mathematical tools are borrowed from optimal control theory rather 
than from operator theory or partial differential equations, 

2. defining generalized solutions by minimizing processes makes it easier to 
guarantee stability and robustness, and the authors are more enthusiastic 
at handling real data, 

3. but artificial non-uniqueness ("secondary minima") may appear, 
4. and possible relations between non-uniqueness and well identified struc- 
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tures (coming for instance from physics, or from spectral theory) are 
hidden. 

Thus, analyses of the first class are more appropriate in theoretical physics 
problems, and contain more exact functional analysis; analyses of the second 
class are more appropriate in applied physics and engineering, and contain 
more numerical analyses. To repeat, boundaries are fuzzy. 

Let us now survey the papers reproduced hereafter. In Sect. 2 we go 
through the various topics of interest, then we focus on scattering problems. 
In Sect. 3, we focus on methods for reconstructing distributed parameters 
in media, and in particular layered media. Since many problems of applied 
physics and applied geophysics reduce to such reconstructions, it is not sur- 
prising that optimization techniques are more prominent there than in Sect. 
2. 

2 A S u r v e y  o f  T o p i c s  

Topics c a n  be classed according to the nature of the waves used (acoustic, 
quantum, seismic, electromagnetic), to the nature of the information given 
(single scattering, tomography, close measurements, etc.), and to the nature 
of the objects to be recovered (shape, distributed parameters, location of 
objects, etc.). Of course, problem analyses and reconstruction methods should 
be adapted to the topics. Several invited lectures are particularly concerned 
about this general adaptation problem. 

Thus, resolution and superresolution in inverse diffraction is the object 
of a tutorial, authoritative lecture by Bertero, Bocacci, and Piana, who also 
study the far-field data and the near-field data, so important now with the 
new microscopy techniques. Resolution is nothing but our power of disentan- 
gling information mixed by wave propagation. 

In the same spirit, Mc Nally and Pike give us a very clear understanding 
of what amount of information is added by current a priori constraints, such 
as positivity or known moments, to a finite set of blurry measurements. They 
shatter the "great expectations" of those who believe this kind of constraints 
alone is sufficient to guarantee a sort of superresolution! 

With Weder's lecture, we enter the important topic of quantum potential 
scattering. Weder deals with the new and very difficult problem of an N- 
body system of particles in n >_ 2 space dimensions with interactions given 
by time-dependent long-range local pair potentials - for example potentials 
that behave as 

1 
V(t,x) ~ C(1 + N)-~(1 + Ixl)- , > 0, ~ < ~ ~ 1, (~ +/~ > 1 (1) 

as Itl-  oo and Ixl-  oo. 
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Exact results are derived and in the inverse problem one starts from sup- 
posedly exact data. Reconstruction formulas are produced. In a well-defined 
class as (1), it is proved that  the potential can be uniquely reconstructed from 
the high velocity limit of the canonical scattering operator with unperturbed 
evolution given by the free hamiltonian! 

The same care at extending exact results to new and difficult inverse po- 
tential scattering problems appears in the paper by Boutet de Monvel and 
Shepelsky. One works in lR, but all difficulties due to the propagation of a 
transient electromagnetic field in inhomogeneous media are present. Rela- 
tions between data  and parameters are completely analyzed, with a resulting 
Gelfand- Levitan method of reconstruction which is, to our knowledge, the 
most general one in one-dimensional problems. Thus the two lectures above 
offer together a fairly good sampling of new tendencies in exact inverse po- 
tential scattering. 

So do two other lectures for approximate inverse potential scattering. For 
Fiddy and Pommet, who manage acoustic waves, the real starting point is 
the Lipmann-Schwinger equation as in quantum scattering: 

k~o) = k~0(r, k~0) - k 2 /D dr' G0(r, r ')Y(r')k~(r',  k~o) k~(r, 

Going to the far-field, and fixing Go, it is possible to recover approximately 
q~(r, k~o) 

W = V(r) q~0 (r, k~o) from the scattering amplitude, and then to make a (non- 

linear) inversion of V from W known at various ~0. The method is better than  
Born or Rytov ones but it keeps the physical features that  appear in these 
approximate methods. It is also closer to exact methods and such a lecture 
give us the philosophy of modern approximate methods: to go as close as 
possible to exact methods without losing physical features. The lecture of 
Scheerschmidt obviously has the same concern. It deals with electron diffrac- 
tion by crystal defects, and tries to use approximations for solving the inverse 
scattering problem without reconstructing the whole crystal potential. Anal- 
ysis is led up to numerical calculations on real data, with rather convincing 
results. 

While the lectures above dealt with potential scattering, the ones below 
now deal with the quite important topic of obstacle shape reconstruction 
from scattering data. 

The Colton and Kress lectures offer us the great interest of complementing 
and updating their authoritative books on the subject. Colton's lecture deals 
with the "resonance region", i.e., with scattering at intermediate frequencies, 
where linearizations are not reasonable managements of the inverse problem. 
Kress' lecture reviews more widely new numerical methods and new appli- 
cations of classical ones for deriving the obstacle shape from far-field data. 
Both produce convincing methods and examples of applications. In the same 
spirit, the lecture by Carfantan and Mohammed Djafari casts, for those who 
prefer a probabilistic presentation, many obstacle reconstruction algorithms 



addendum to Kress' lecture on numerical methods. 
As in the potential scattering case, we guess that this sample enables us 

to appraise quite well new trends in this domain. 
Before going on to the problems of scattering by classical media (dis- 

tributed parameters, more or less layered inhomogeneities), which will be 
studied in Sect. 3, we think that the best transition is offered by Natterer's 
lecture. It deals with acoustic scattering, distributed parameters, and tomo- 
graphic soundings. It is a short lecture, showing the state of art briefly but 
sufficiently to get a sound idea of it, and then working out a simple method 
for extracting information from three-dimensional ultrasound tomography, 
with examples of application to real data. 

3 I n v e r s e  S c a t t e r i n g  b y  D i s t r i b u t e d  M e d i a  

Most of the papers in this section use, in one form or another, a least-squares 
approach for the definition and numerical resolution of inverse problems. 

The only exceptions are: 

- Two papers consider basic properties which are important for theoreti- 
cal analysis and/or numerical resolution. The lecture of Bao and Symes 
provides conditions under which the linearized density-to-measurement 
map in an inverse acoustical problem is bounded. This theoretical result 
is important for the justification of the least-squares approach used to 
solve this kind of problem. Another basic result, in the lecture by Joly, 
concerns the development of both efficient and precise numerical tools for 
solving the forward problem (this is known to be one of the cornerstones 
in the study of the inverse problem): a new discretization approach for 
the obstacle is proposed, which does not generate artificial diffraction, 
together with new high-order finite elements, that allow mass-lumping 
for the Maxwell equations. 

- Two papers test alternative approaches to the least-squares formulation: 
in their lecture, Litman, Lesselier, and Santosa adapt the level-set ap- 
proach of Osher and Sethian to show convincing numerical results. A 
revival of the good (or bad?) old layer stripping method is proposed by 
Fatone, Maponi, Rignotti, and Zirilli for reconstructing the velocity in a 
layered half-space from surface measurements of a 2D wavefield. We have 
decided to include this paper for its "tour de force" in calculations, but 
of course limitations of the layer-stripping approach will apply in 2D as 
strongly as in 1D. 

We come now to the six papers which are the main corpus of this section. 
They all correspond to the same general class of least-squares methods, where 
a data misfit objective function, defined through solving a state equation (for- 
ward model), is minimized by local (gradient) or global (simulated annealing) 
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methods with respect to a distributed unknown parameter.  With the excep- 
tion of the last paper, they all concern the domain of reflection seismics, 
where one tries to image the Earth 's  interior from acoustic or elastic surface 
measurements. 

The first lecture, by Cuer, recalls difficulties associated with the multi- 
modali ty of the least-squares objective function in the case of a horizontally 
layered medium, and shows how the replacement of depth by vertical travel 
t ime partially overcomes them. An important  though very technical contri- 
bution of his results is their giving an exact t ransparent  boundary condition 
for a 3D source in a 1D elastic medium: it allows an efficient calculation of 
the forward model required for evaluating the objective function. 

The second lecture, by Ernst  and Herman, is devoted to eliminating from 
reflection data  the reflection and diffraction events created by near-surface 
scatterers, which are considered an unwanted "noise" when one is interested 
in imaging the deeper structure of the Earth.  These near-surface scatterers 
are determined by solving the corresponding inverse problem (it requires a lot 
of clever approximations in order to derive an efficient forward model based 
on modal decomposition), and the corresponding wavefield is then subtracted 
from the data. 

The next three papers present inversion results from reflection da ta  when 
the key point is an efficient forward modeler by ray tracing: 

- Moser, Biryulina, and Ryzhikov use a fast 2D forward model ("recursive 
wavefront construction") for a distributed medium with discontinuous 
velocities, and apply it to the imaging inside a horst in a complex 2D 
medium; 

- Amand and Virieux emphasize the computational efficiency by paral- 
lelizing their ray-tracing code, which allows them to invert realistic da ta  
(hundreds of shots with 96 receivers each) by simulated annealing; 

- Ribodett i  and Virieux define a ray tracing algorithm for the propagation 
of SH waves with attenuation, using a complex Lam~ coefficient #, and 
apply it to recovering the at tenuation factor Q in a thin layer embedded 
inside a uniform background. 

Alestra and Duceau present a nice application of the general least-squares 
methodology to an inverse scattering electromagnetism problem, where the 
unknow is the permitt ivi ty in a stratified biperiodic and 2D medium. Finally 
a short contribution of Scotti and Wirgin reminds an original method in 
obstacle reconstruction. 

Once again, the papers of this section give a reasonable idea of the state  
of the art  concerning theoretical difficulties and numerical achievements for 
inverse scattering by distributed media: the gap between theory and practice 
is still important ,  but  steadily shrinking. 
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A b s t r a c t .  In this tutorial  paper  we discuss the concept of resolution in prob- 
lems of inverse diffraction. These problems have direct applications in areas such 
as acoustic holography and can also be considered as intermediate steps of more 
general problems of inverse scattering. We justify the generally accepted principle 
that  the resolution achievable is of the order of the wavelength of the radiation 
used in the experiment.  Moreover we indicate two cases where super-resolution, 
i.e. resolution beyond the limit of the wavelength, can be achieved. The first is the 
case of near-field da ta  where super-resolution is possible thanks to the information 
conveyed by evanescent waves. The second is the case of subwavelength sources, 
where super-resolution is possible thanks to out-of-band extrapolation of far-field 
data.  Simple algorithms for obtaining this result are also described. 

1 I n t r o d u c t i o n  

In p r o b l e m s  of  wave p r o p a g a t i o n  such as those occur ing  in opt ics ,  acous-  
tics,  e l e c t r o m a g n e t i s m  etc.,  a gene ra l ly  accep ted  pr inc ip le  is t h a t  the  res- 
o lu t ion  achievable  a b o u t  the  sources f rom obse rva t ions  of  the  s ca t t e r ed  or 
e m i t t e d  r a d i a t i o n  is o f  the  o rder  o f  t he  wave length  A of  the  r a d i a t i on .  In  
o the r  words  th is  m e a n s  t h a t  i t  is on ly  poss ib le  to  recover de ta i l s  of  the  source  
whose l inear  d imens ions  are of the  o rde r  of  X Moreover  one says  t h a t  in a 
p a r t i c u l a r  p r o b l e m  super - reso lu t ion  is achieved if i t  is poss ib le  to  o b t a i n  a 
reso lu t ion  l imi t  much  smal l e r  t h a n  A. In th is  t u to r i a l  p a p e r  we discuss  two 
p r o b l e m s  of  inverse d i f f rac t ion  and  we use these p r o b l e m s  for i nves t iga t ing  
two cases where  super - reso lu t ion  is achievable .  

Inverse d i f f rac t ion  can  be defined as the  p r o b l e m  of d e t e r m i n i n g  the  field 
d i s t r i b u t i o n  on a b o u n d a r y  surface Z1,  f rom the  knowledge  of  the  field d i s t r i -  
b u t i o n  on a surface ~2 s i t u a t e d  wi th in  the  d o m a i n  where the  wave p r o p a g a t e s .  
Such a p r o b l e m  is, i m p l i c i t l y  or expl ic i t ly ,  an i n t e r m e d i a t e  s tep  in a p r o b l e m  
of  inverse sca t t e r ing :  the  recovery of  t he  s t ruc tu re  of  the  source (or obs tac le )  



from observations of the field on a surface E2 implies the recovery of the field 
on a surface Z1 surrounding the source. Then the resolution in the recovery 
of the source is roughly of the order of the resolution in the recovery of the 
field on Z1. 

We will consider two very simple cases: in the first 221 and E2 are two 
parallel planes while in the second Z1 and Z2 are two concentric spheres. The  
first case is of interest both in far field acoustic holography (FAH) (Sondhi 
1969) and in near field acoustic holography (NAH) (Williams and Maynard 
1980) as well as in the application of holographic techniques to inverse scat- 
tering in optics (Wolf 1970), since in these applications the amplitudes are 
detected over planar surfaces. The second case clearly applies to experiments 
where the field is observed over a sphere surrounding the sources or scatterers. 

In the first case it is possible to define in a precise way the so-called 
Rayleigh resolution limit which is proportional to A and which corresponds 
to the case of far-field data. Then super-resolution is possible or by the use of 
a priori information about the source if only far-field data  are available or by 
the use of near-field data  by taking advantage of the information conveyed 
by evanescent waves. 

In the case of spherical surfaces one can also consider the two problems, 
that with far-field data  and that  with near-field data. For the first problem 
the data  are the values of the so-called diffraction pattern, which coincides 
with the scattering amplitude in the case of a scattering experiment. 1"or the 
second problem the data  are the values of the field amplitude over a sphere 
surrounding the sources. For the inverse diffraction problems corresponding 
to these situations it is possible to show, by investigating the behaviour of the 
eigenvalues of the propagation operators, that  effects similar to those occuring 
for planar surfaces must also hold true, even if the analysis is essentially 
qualitative. 

Finally, in the last section, we describe methods which can be used tbr 
the restoration of objects of the order of the wavelength fi'om far-field data. 
We also briefly discuss the effect of different constraints on the regularized 
solution in these circumstances. 

2 I n v e r s e  d i f f r a c t i o n  f r o m  p l a n e  t o  p l a n e  

Let the sources of a monochromatic  field, u ( r )  = u(xt, x2, x3), be located 
in the half-space x3 <: 0; we consider the free propagation in the half-space 
x3 > 0. Then in this region the fieid amplitude u is a solution of the t telmoltz 
equation 

u + k 2 u = O  , x 3 > O  (2.1) 

where k is the wavenumber, related to the wavelength A by 

k =  - -  ( 2 . 2 )  



There exists a unique solution of equation (2.1) satisfying the following con- 
ditions: 

1. Sommerfeld radiation condition at infinity 

lira r(0--~-u-err - i k u ) - =  0 , r = ~/x~ + x~ + x32 ; (2.3) 
,-.~o 

2. a boundary condition on the plane x3 --= 0 (the source plane) 

u(xl ,  x2, O) = f ( x l ,  x2) (2.4) 

In general it is reasonable to assume that  f is a square-integrable function. 
It has been proved by Sommerfeld (Sommerfeld 1896) that  there exists a 

unique solution of this problem, which is given by 

/ 2 / + :  , , , , ,  
u(xl ,  z2, x3) = G(+)(xl - x 1, x2 - x 2, x3) f (x , ,  x2)dxldx 2 (2.5) 

where 
1 0 eik" (2.6) 

G(+)(r) - 27fOx3 r 

is the (forward) Green function of the problem. However, for the discussion 
of the inverse diffraction problem, the so-called representation in terms of an 
angular spectrum of plane waves (Shewell and Wolf 1968) is more useful. 

Let us consider the plane x3 = a > 0 and let us denote by p = {xl, x2} the 
position of a point in a plane orthogonal to the x3-axis. Then the amplitude 
ua(p) = u(xl ,x2,  a) of the field on the plane x3 = a can be written as a 
convolution product 

uo(P) = (S~ +) * f ) (P )  (2.7) 

where S(~+)(p) = G(+)(xl, x2, a) acts as a point spread function (PSF). The 

Fourier transform of S(~ +), i.e. the transfer function (TF) of the system, can 
be comp, t ed  and it is given by 

G (+) (~) = ~'~(~) (2.s) 

f (k = - I~,l~) -~ I~t <_ k m(o.~) (2.9)  
i ( l " l  = - k~) -~ I"1 > k 

Therefore the transfer function has an oscillatory behaviour at low spatial 
frequencies (more precisely when Iwl < k) while it has an exponential decay, 
as exp ( -a lw])  , at high spatial frequencies, i.e. when ]w] > k. The plane waves 
with spatial frequencies [¢o I < k are called homogeneous waves while the plane 
waves with Iwl > k are called evanescent waves. In figure 1 we plot the real 

and imaginary part of the PSF S (+) as a function of p = IPl, for two values 



of a: a = A/5 and a = hA. When a < A the PSF has a rather  narrow central 
peak and small side-lobes. In fact the PSF tends to a Dirac delta function 
when a --+ 0. On the other hand, when a > A, the PSF shows oscillations with 
roughly equispaced zeroes, the distance between adjacent zeroes being of the 
order of A/2. These different behaviours correspond to different behaviours 

of the transfer function S(+). In figure 2 we plot the modulus  of S(+) as a 
function ofw = I¢oh for the same values of a used in figure 1. The  modulus  of  
the transfer function is one up to Aw = 2re and then decays exponential ly for 
Aw > 2rr. In the case a = 5A it is so sharp that  the modulus  of the transfer 
function is very close to a step function. 

The previous analysis clearly indicates tha t  the effect of propagat ion  can 
be described in terms of a Fourier filter, more  precisely a low pass Fourier 
filter and that  two distinct spatial  regions can be considered: 

- Near-field region: corresponds to distances a < A; in such a case the 
contribution of evanescent waves is impor tan t .  

- Far-field region: corresponds to distances a > ~; in such a case the con- 
tr ibution of evanescent waves is negligible; one can assume that  the field 
ampli tude u~ (p) is band-limited with a band given by 

IB = , _< k}  (u.10)  

We can formulate now the problem of inverse diffraction from plane to 
plane: evaluate the field amplitude f ( p )  on the boundary plane x3 = O, being 
given the field amplitude g(p) = ua(p) (corrupted by noise or experimental 
errors) on the plane x3 = a. 

2.1 I n v e r s e  d i f f r a c t i o n  f r o m  f a r - f i e l d  data  

In this ca.se evanescent waves can be completely neglected. Therefore 
the inverse diffraction problem is equivalent to solve a convolution equation 

where the PSF S(a +) is a band-l imited function with band /B ,  equation (2.10), 

i.e. S~(+)(w) = exp[ iam(w)]  when {w{ < k and S(+)(co) = 0 when lw{ > k. 

Its inverse Fourier t ransform S~ (+) (p) will be called the forward propagation 
kernel. 

It is obvious that  the solution of the problem g = S~ (+) , f is not unique; 
moreover it may  not exist if g is affected by out-of-band noise. However, in 
such a case, the ill-posedness of the problem is not very serious and it (:an be 
cured by considering the generalized solution, i.e. the leasL-squares solution 
of minimal norm (Groetsch 1977). 

It is very easy to prove that  the generalized solution f f  (p) can be written 
as follows 

f?(p)  = (S(a -)  , g)(p)  (2.11) 



. . . .  I . . . .  I . . . .  I . . . .  I . . . .  

¢,.,,_ 
. . . .  I . . . .  I . . . .  I . . . .  I . . . .  

0 lilt • 0 ,11 10 

k | 

I . . . .  I . . . .  I . . . .  1 

. . . .  I . . . .  [ . . . .  I . . . .  I . . . .  
8 4 I 0 10 

a) b)  

0 . |  

O.I 

0.0 

-0.1 

10 $0  8 0  4 0  60  0 10 2 0  3 0  4 0  5 0  

c) d)  

Fig. 1. Plot of the real and imaginary part of S +, as a function of x :: p/A, for 
a = )~/5 (panels a) and b)), corresponding to the near-field region and for a = 5A 
(panels c) and d)), corresponding to the far-field region. 

where the backward propagation kernel S(-)(p) is given by 

sS,-)(p) = (2~)--- ~ ~-i""*(~)e'iP'd,.o (2.12) 

The problem of determining the generalized solution is well-posed. 
If we assume that  the data  are given by 

g = s ( + ) ,  f + w (2.1a) 

where w is a term describing noise or experimental  errors, then from equation 
(2.11) and (2.13) we obtain 

jet = ( S ( - ) ,  S ( + ) ) ,  f + S(-)  , w (2.14) 
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Fig. 2. Plot of the modulus of the TF S + (w), as a function of ( = ),w, for the values 
of a of figure 1: a = )~/5 (dashed line) and a = 5)~ (solid line). 

The  term S ( - )  * w is the noise contribution to the generalized solution. Its 
L2-norm is smaller than the L2-norm of the noise: since the out-of-band noise 
does not contribute to S ( - )  , w, from equation (2.12) and Parseval equality 

one easily derives that  IIS (-)  * wll < Ilwll. As concerns the first term, the 

kernel HN = S ( - )  , S (+) is the inverse Fourier t ransform of the characteristic 
function of the band/ /3,  equation (2.10), and therefore it is given by 

1 . k Jx(kloI)  (2.15) 
(2 r)2 I01 

We conclude that:  

1. The generalized solution f? is a noisy band-l imited approximat ion of the 
boundary ampli tude f .  

2. The kernel H~(p) has a central peak at p = 0 and is zero over circles 
with centre the origin and radii proport ional  to the zeros of the Bessel 
function Jl(t). 

The radius of the first circle is given by 

R =  1.22~ = 1.22~ (2.16) 

and this is the famous Rayleigh resolution limit (Born and Wolf 1980). It  
is the radius of the central peak of the function Hn~(p) and it provides a 
measure of the smallest details of  f(p) which are recoverable. Moreover it is 
closely connected to the size of the band /B: the larger is the radius of the 
band, the smaller is the resolution distance. 



In figure 3 we give two examples of restorations of binary objects obtained 
by means of the generalized solution f t .  They make evident that  details of 
the order of the wavelength are recovered, while details smaller than the 
wavelength are not. In fact the first object is a grid which does not contain 
details smaller than the wavelength, while the second one contains details of 
the order of A/2. The images of the two objects are computed on the plane 
a = 5A and are contaminated by white gaussian noise (with ~r = 0.01, about 
1% of the maximum value of the field amplitude). The restoration of the first 
object, provided by equation (2.11), clearly shows the vertical and horizontal 
bars, which are 1A wide. In the restoration of the second object the bars are 
essentially lost, in agreement with the Rayleigh criterion. 

Now, the Rayleigh limit (2.16) is related to the radius k of the band of the 
generalized solution (2.11), more precisely it is proportional to the inverse of 
this radius. Therefore, in order to obtain a resolution better than the Rayleigh 
limit, it should be necessary to increase the band, i.e. to extrapolate the 
generalized solution outside lB. This is possible, in principle, :if the Fourier 
transform of the unknown amplitude f is analytic and a sufficient condition 
for the analyticity of ] is the boundedness of the support of I- 

In order to investigate the consequences of this condition, one can proceed 
as follows. First recover (noisy) values of ](w) inside //~ by computing the 
generalized solution I t (p). If we neglect the noise term, from equations (2.14) 
and (2.15) we obtain that 

I t = I1~ * f (2.17) 

This convolution operator is the band-limiting operator which projects f onto 
the subspace of the flmctions whose band is int;erior to the band ~?, equation 
(2.10). Next, if we have a priori intbrmation about the support of f and, in 
particular, if we know that  its support is interior to some bounded domain 
D of the plane, then we can restrict the convolution operator (2.17) to the 
subspace of functions whose support is interior to g). This is equivalent to 
introduce the following operator from L2(D) into L2(~  2) 

/ ~  H~(O - o')f(P')do' (2.18) (df ) (p)  

Then extrapolation of ] outs ide/B is equivalent to solve the equation 

f t  = A f  (2.19) 

In fact, in the absence of noise, this equation has a unique solution whose 
support is interior to D and whose Fourier transform coincides with ](w) 
over B .  

However the problem (2.19) is ill-posed. The operator A : L2(K)) --+ 
L2(/R 2) is a compact and injective operator. Its singular functions are re- 
lated to the generalized prolate spheroidal functions introduced by Slepian 
(Slepian 1964) and its singular values are the square roots of the eigenvalues 
associated with these functions. By investigating the singular value spectrum 
of the operator (2.18) and by using the most simple regularization techniques 
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Fig .  3. Two examples of restorations obtained by means of the generalized solution 
(2.11). Panel a) is a grid 10.k wide with vertical and horizontal bars 1)~ wide; panel 
b) is a grid 2.5A wide with bars 0.5A wide. Panels c) and d) show the modulus of the 
corresponding images on the plane a = 5A. Panels e) and f) show the restorations 
provided by the generalized solution (2.11). 



(truncated singular flmctions expansion) it is possible to obtain the following 
result (Bertero and Pike 1982): if /D is a disc of radius d, then it is possible 
to obtain a significant out-of-band extrapolation (and therefore a significant 
improvement of resolution) for reasonable values of the signal-to-noise ratio, 
if the quantity c = kd is not much larger than one. In other words, super- 
resolution is feasible when the size of the region where f is different from 
zero is of the order of the wavelength ~. We observe that  the second object 
of figure 3 satisfies this condition. Such objects are sometimes referred to as 
subwavelength sources. 

In general, the computation of the singular system of the operator (2.18) 
is difficult and therefore singular function expansions cannot be used for im- 
proving Rayleigh resolution limit in 2-D problems. However a very simple 
iterative method, only based on Fourier transtbrm, was proposed by Gerch- 
berg (Gerchberg 1974). Since it can be proved that  this method is equivalent 
to the well-known Landwebcr method (De Santis and Gori 1975), it follows 
that  it is equivalent to a filtering of the singular fi,n,::tion e×pa)lsion of the 
solution, which can be obtained without computing the singular system of 
the operator. A more general algorithm for super-resolution will be discussed 
in section 4. 

2 . 2  I n v e r s e  d i f f r a c t i o n  f r o m  n e a r - f i e l d  d a t a  

As we already remarked tile near-field region corresponds to distances 
between the two planes smaller than the wavelength )~. This condition is 
satisfied, for instance, in near-field acoustic holography (NAH) (Williams and 
Maynard 1980) and in scanniT)g near-field optical microscopy (SNOM) (Pohl 
and Courjon 1993). 

In such a case the information conveyed by evanescent waves allows to 
increase the resolution beyond the Rayleigh limit. If we consider again the 
integral equation 9 = S (+) * f ,  where S (+) is given now by equations (2.8) 
- (2.9), the solution of this equation is unique but the problem is still ill- 

posed as a consequence of the exponential decay of S (+) (w) when Iwl > k. 
The most simple regularized solution of the problem can be obtained by a 
truncated Fourier transform inversion. If we have an estimate e of the norm 
of the noise and an estimate E of the norm of the boundary amplitude f ,  
then an estimate ] of f satisfying the bound E and reproducing the data  
within an error e is given by 

](w) = { e-i°m(~)9(~)I~1 < keff (2.20) 
0 [w[ > keff 

where 

keff = max{I¢ol, I~£+)(~)1 ~ ~ }  (2.21) 

This is a particular case of the methods, based on truncated spectral repre- 
sentations, investigated by Miller (Miller 1970). 
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Since e/E < 1, the condition in equation (2.21) can be replaced by the 
following one 

2 k exp [a(I¢o[ 2 - k )~] <_ ~ (2.22) 

and one easily finds that  

[ '  k e f f = k  l + ~ l o g  2 (2.23) 

The regularized solution f is still bandlimited with a b a n d / / 3 e f  t which is 
a disc of radius keff: 

1 [ .e_i~,~(,o)~)(w)eiO.,Odw (2.24) 

By applying the Rayleigh criterion one finds that  the resolution limit is now 
given by 

ka 
Reff = 1.22 ~ R , (225)  

~e{:[ 

where the factor 1 in the r.h.s, of equation (2.23) has been neglected. 
We point out that  this resolution distance depends on the distance be- 

tween the two planes and, in fact, it decreases quad':atically when a decreases. 
Moreover it depends logarithmically on the signal-to-noise ratio ~ and it de- ft 
creases when E increases. F_ 

In order to giw~ an idea of tile considerable improvement  of resolution 
which can be achieved in this way, we consider the case of acoustic waves 
with a frequency of 3.3 kHz (we remind that  the range of frequencies of 
acoustic waves is between 20 Hz and 20 kHz). The corresponding wavelength 
is about  10 cm and therefore the Rayleigh resolution distance (2.16) is about  
6 cm. Now, if we assume to collect da ta  at the distance of 1 cm from the 
source plane and if we also assume that  the signal-to-noise ratio E/e is of the 
order of 100, then from equations (2.23) and (2.25) we derive that  Reff _~ 0.11 
cm, with an improvement ,  with respect to the Rayleigh limit, by a factor 54. 
If we should be able to collect da ta  at a distance of 1 mm,  then we should 
have an improvement  by a factor 5400. If  E/e = 10 then these figures must  
be reduced by a factor 4 but they still imply a spectacular improvement  of 
resolution. 

3 I n v e r s e  d i f f r a c t i o n  f r o m  s p h e r e  t o  s p h e r e  

In the previous section we investigated the case of planar surfaces and 
we considered two cases of super-resolution: a) sources of the order of the 
wavelength in the case of far-field data;  b) sources of arbi trary size in the 
case of near-filed data.  The most  significant improvement  of resolution can 
be obtained in the second case. 



It is expected that  similar results apply also to other surfaces, in particular 
closed and bounded surfaces. It is interesting to note that, for these surfaces, 
we have uniqueness of the solution also in the case of far-field data. The 
problem, however, is still ill-posed because the solution does not exist ibr 
arbitrary data  and, when it exists, does not depend continuously on the data. 
In order to clarify these points we investigate the case of spherical surfaces. 

Assume that  r t  is a sphere, with centre the origin and radius at, con- 
taining all the sources (or scatterers) of the radiation field. Then the solution 
of the diffraction problem consists in determining a solution u = u(r, 0, 05) 
of the Helmoltz equation (2.1) in the region r > 31 satisfying Sommerfeld 
radiation condition (2.3) at infinity and also a boundary condition oll the 
sphere r = at 

u(al, O, ¢) =: f(O, ¢) (3.l) 

where f is a given function (direct problem). The solution of this ditfrac- 
tion problem can be easily obtained by means of expansions in terms of the 
spherical harmonics Yt,m. If we denote by Ji,,~ the exp~msion coefficients of 
the boundary data  f 

= £ f(O, ¢) ~,*~ (0, ¢)dO , (3.2) 

where t2 is the unit sphere and dg2 = sin OdOd¢, then the spherical harmonics 
expansion of u(r, 0, ¢) is given by 

hp)(kr) 
u(r, O, ¢) = E fz,m h~l) Yl,,~ (O, ¢) (3.3) 

l,rn (kal) 

where the functions hll)(r) = (rr/2r){ H{+ ) (r) are the spherical Hankel func- 

tions of the first kind. 
The inverse diffraction problem can now be formulated as follows: given 

the vahles of the field amplitude on the sphere £'2 with centre the origin and 
radius a2 > al, determine the unknown field amplitude f on the boundary 
sphere al.  This problem is, in fact, equivalent to the inversion of the following 
integral operator A :  L2(O) -+ L2((2) 

¢) = [ S (+) (0, ¢; 0', ¢')f(O', ¢')dag' (3.4) (Af)(O, 
Ja 

where 

s(+)(o, ¢; 0', ¢') = y ~  ~ Y ,  ~(0,  ¢)y,,.~(o', ¢') (3.5) 
~,.~ h} ~(kal) ' 

This is a compact operator and its eigenvalues /ks, with multiplicity 21 + 1, 
are given by 

~, _ (3.6) h}t)(kal) 
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Since for large l one has 

)~t -~ exp [--(/ t-  1)log(-aa- ~)] , ( 3 . 7 )  

the problem is severely ill-posed. However the exponential decay of the eigen- 
values decreases when the ratio a2/31 decreases. It follows that, if we regu- 
larize the problem by considering truncated spherical harmonics expansions, 
one can recover more and more terms as the sphere L'2 approaches the sphere 
$1. This is an effect which is due again to evanescent waves even if a clear 
distinction between evanescent and homogeneous waves does not appear from 
the expansion (3.3). In fact, to this purpose, a much deeper analysis of the 
solutions of the wave equation is needed (Levi and Keller 1959). 

As concerns the problem with far-field data one can now consider the 
asymptotic case r --+ oe. From the asymptotic behaviour of the spherical 
Hankel functions 

hl )(r) (_i),+1 e ikr (a.s) 
r 

one obtains the asymptotic behaviour of the field amplitude (3.3) 

eikr 
u(r, to, ¢) ~_ g(to, ¢) (3.9) 

r 

whe re  

f,.r  (3.10) 
t , ,~  hll)(kal) 

The function g(O, ¢) is usually called diffraction pattern and is related to 
the scattering amplitude in the case of scattering problems. The problem of 
inverse diffraction from far-field data  can now be formulated as the problem 
of estimating the boundary function f(to, ¢) from knowledge of the diffraction 
pattern g(to, ¢). This problem, which is still ill-posed and, in fact, much more 
ill-posed than the problem of inverse diffraction from near-field data,  can be 
formulated as the inversion of the integral operator 

(Af)(to, ¢) = f~ S(oo+)(O, ¢; O', ¢')f(O',  ¢ ' )d f f  (3.11) 

where 
(__i)l+1 

S ~ )  (t9, ¢, to', ¢') = ~ h ~  ~ Yl,m (0, ¢)Yt~,n (to', ¢') (3.12) 
I,rn l I 1) 

This is a compact operator in L2(f2) and it is also injective (uniqueness of the 
solution of the inverse diffraction problem with far-field data).  Its eigenvalues 
are given by 

= ( - i ) l + l  
h ~ l ) ( k a l  ) (3.13) 
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and they tend to zero much more rapidly than the eigenvalues (3.6) of the 
problem with near-field data. In fact their asymptot ic  behaviour is IAtl 
e×p [ - I  log(~t/eka,)]. 

An analysis of super-resolution in the case of far-field da ta  has not yet 
been performed. It is reasonable to conjecture that  super-resolution can be 
obtained in the case where the radius al of the sphere is of the order of 
the wavelength of the radiation. An indication in this direction has been 
obtained by an analysis of the inverse scattering problem in the case of Born 
approximation (Habashy and Wolf 1994). 

4 A n  a l g o r i t h m  f o r  s u p e r - r e s o l u t i o n  

We come back now to the problem of inverse diffraction from plane 
to plane, section 2, and we describe an algorithm which can be used for 
achieving super-resolution when a priori information about  the support  of 
the boundary function f (p )  is available. 

At the end of section 2.1 we mentioned the Gerchberg algori thm which can 
be used for this purpose. However this algorithm cannot be applied directly to 
a convolution problem such as that described by equation (2.7). One must first 
estimate the Fourier transform of f ( p )  over an effective band (for instance 
the disc of radius k, as in section 2.1, or the disc of radius keff , as in section 
2.2); then one can use Gerchberg algorithm for extrapolat ing the l~burier 
transform of f (p )  outside the effective band. 

We describe now an algorithm which is a generalization of the Gerchberg 
algorithm and does not require to solve the problem in two steps. 

For generality, we consider a bounded convolution operator 

(A f ) (p )  = (K , f ) (p )  (4.1) 

and the associated first kind equation 

A f  = g (4.2) 

where g is a given function, the data  of the problem. We also assume that  f 
belongs to the subspace of functions whose support is interior to a given and 
bounded domain//9.  The projection operator onto this subspace is given by 

(Pn9 f ) (p )  = X~9 (P) f (P)  (4.3) 

where Xa  (P) is the characteristic function of the domain JD. 
Under rather broad conditions on the PSF K(p ) ,  the operator APn9 is 

compact and regularized solutions of the equation 

AP~g f = g (4.4) 

are provided by the Landweber method 

f~+l = f,~ + vP~(A*  g - A*APngf , )  (4.5) 
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where r is the relaxatiou parameter, satisfying tile usual conditions 

2 
0 < "r < iiAiD--- v (4.6) 

In the case f0 = 0, it is easy to show by induction that  all the iterates f,~ 
satisfy the c'ondition Pngf ,  = f , .  Therelbre the method (4.5) is equivalent to 
the ibllowing projected Landweber method 

5 + t  = e ~ A  + rPeoia*g - Z*Af~) (4.7) 

From this equation one can easily derive that the algorithm can be imple- 
mented using only the Fourier transform. In fact, if f~ (p) has been computed, 
then one can compute )~(w) and by )~(w) the function 

]~,~+l(w) = )~ ({,,) + r(/~'*(w)~(¢,,) - I/~'(w)12£({,,)) (4.8) 

The last step consists in computing the inverse Fourier transform of ]~,~+ 1 (¢z), 
h,~+l(p), and in projecting this function by means of Pt9 in order to obtain 

= 

The advantage of this method is that  it does not require the use of the 
singular functions of the operator A P ~  and therefore call be easily imple- 
mented. 

In figure 4 we give an example of restoration obtained by means of this 
method. The object in figure 4(a) is the smaller object of figure 3, i.e. a grid 
with size 2.5A, therefore of the order of A as required for achieving super- 
resolution from far-field data. The data  are the same of figure 3(d), i.e. the 
noisy amplitude on the plane with a = hA. The restoration of this object 
provided by algorithm (4.7) is represented in figure 4(b) where it is evident 
the recovery of the four square holes, with size 0.hA each, which are completely 
lost in the generalized solution of figure 3(f). The support used is just the 
square with size 2.5A. If we do not have this information, it can be inferred 
from the da ta  by performing inversions with different supports. We note that  
the super-resolution effect is just the one described at the end of section 2.1. 

In (Piana and Bertero 1996) it has been pointed out that  the iteration 
(4.7) defines a regularization algorithm. In fact, if the data  9 is not affected 
by noise and if f0 = 0 the sequence {f~}~=l defined by equation (4.7) con- 
verges to the unique solution of equation (4.4) in the strong topology of L 2. 
Moreover, in presence of noise, the Mgorithm is characterized by the so-called 
semiconvergence property, i.e. the restoration error Hf,~ - fII decreases first 
and increases later with respect to the number of iterations. This means that  
in this method the number of iterations plays the role of the rcgularization 
parameter. In order to determine the opt imum value of this number, several 
"ad hoc" criterions have been fornmlated in the case of real data. Things are 
significantly simpler when the data  function is obtained synthetically, since, 
in this case, the theoretical model f is explicitly known and the best num- 
ber of iterations can be obtained by minimizing IIf-- ]'~]] with respect to n. 
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Fig. 4. Example of restoration obtained by means of the projected Landweber 
method. Panel a) is the smaller grid in figure 3. Panels b) and c) show the restora- 
tions provided by the method, by using respectively the constraint of compact 
support and the constraint of upper bound. Finally panel d) shows the effect of the 
combined use of the compact support and the positivity constraints. 

When, as in the present example,  the behaviour of this restoration error is 
characterized by an extremely flat min imum,  it is possible to stop the itera- 
tion before the min imum is reached, without  a significant loss of accuracy in 
the restoration. In the case of figure 4(b) it is n = 100. 

However, in general, a notable acceleration of the projected Landweber 
method can be obtained by means of the so-called preconditioninq. This pro- 
cedure consists in the application of the algori thm to a modified least-squares 
problem. In several numerical examples  regarding one dimensional models, it 
has been shown (Piana and Bertero 1996) tha t  the application of precondi- 
tioning allows to obtain a gain in convergence speed up to a factor ten with 
no substantial  modifications in the reconstructions. 
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The projected Landweber me thod  can be readily generalized to the restora- 
tion of functions which belong to a closed convex subset g of the source space. 
In this case, the convex non-linear projection operator  Pc can be introduced 
and the constrained algorithm becomes 

f n . k l  - :  l)c(fn -~" 7"A*a -,-A*Af,~) (4.9) 

The  method is now non-linear and the convergence of the i teration (4.9) to the 
generalized solution has been shown only in the weak topology. Nevertheless, 
numerical evidence of the strong convergence is provided by several examples.  

The algorithm (4.9) can be used when it is necessary to impose upper  or 
lower bounds on the solution. A typical lower bound is provided, for instance, 
by positivity. These constraints are, in general, useful in order to reduce 
the ringing effects which appear  when linear methods  are used for restoring 
discontinuous objects. For these constraints Pc is easily computable  as well 
as in the case where one wishes to combine the support  constraint with upper  
or lower bound constraints. 

The object of figure 4(a) is a binary object which takes only the values 
0 and 1. Therefore these values can be used as lower and upper  bounds. In 
figure 4(c) we give the restoration obtained by means of the algori thm (4.9) 
after 100 iterations when only the upper  bound is imposed. It  is remarkable 
tha t  a super-resolution effect is obtained without using the constraint on the 
support .  This is probably  due to the reduction of the ringing effects which 
are evident in the generalized solution (see figure 3(f)). In this example,  the 
constraint of positivity is useless because the generalized solution of figure 
3(f) does not take negative values. This is not true for the restoration of 
figure 4(b). Therefore in such a case posit ivity can be useful. In figure 4(d) 
we give the result obtained by combining posit ivity and support  constraint.  
I t  is evident that  the restoration is quite good. 
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Abst rac t .  The study of Fredholm equations of the first kind, which are ill-posed 
inverse problems, is an area of physics and mathematics that is currently flourishing, 
with applications in many areas of interest. Problems of this type are characterised 
by a forward relation that includes some loss of information. It is the loss of infor- 
mation that makes calculating the backward relation so difficult. Work is presented 
here which attempts to add in some of the lost information by making use of such a 
priori constraints as positivity and known moments. This is achieved by the method 
of quadratic programming, with a choice of optimisation criteria studied. 

1 I n t r o d u c t i o n  

Examples of Fredholm equations of the first kind range from restoration of 
diffraction limited optical images (E. G. Steward, 1983), to problems in high 
temperature  superconductivity (C. E. Creffield et al, 1995) and experimental  
sizing of macromolecules (Cummins ~: Pike, 1974). These equations describe 
how the collected data  (the image) is formed from the unknown solution (the 
object) and the blurring function (the kernel). If we first consider the one 
dimensional continuous case, we can denote the object by f (x ) ,  the image by 
g(y) and the blurring kernel by K(y, x). Then the Fredholm equation of the 
first kind is: 

/? g(y) = K(y, (1) 

This equation is perfectly general. It is only out of convenience that  f is 
described as the object, g as the image and K as the blurring kernel. For 
example, in the case of macromolecular sizing, f is a particle size probabili ty 
distribution, and g is the first-order correlation function. 

When the data  is collected experimentally it can only be sampled at a 
finite number of points, which leads to the problem being discretised. The 
image is represented on Ni points with values g(yj) 1 <_ j < Ni, the object 
on No points with values f(xi) 1 <_ i < No, and the integral operator  
represented as a matr ix operator K(yj ,xi)  1 < j < Ni 1 < i < No. This 
discretised Fredholm equation of the first kind, with a suitably discretised 
noise vector, is represented as: 

g(yj) = K(yj,  xi)f(xi) ÷ ~(yj) (2) 

Or more simply, setting the image, object and noise as vectors, and the 
imaging kernel as a matr ix  operator: 
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g + .  (3) 

Computationally, since f represents a continuous function, the number of 
points used to represent it, No, has an upper limit constrained only by the 
available processing power. For most purposes a value of No "-~ 200 is adequate 
to approximate the continuous case. The number of sampled data  points, Ni, 
is dependent on the effort required to sample the data  experimentally, and 
the amount  of "blurring" present in the experiment. Typically, Ni will be 
much less than No. 

1.1 T h e  S V D  S y s t e m  as a G e n e r a l  D e s c r i p t i o n  

The most general description of (1), which also leads to a method of solving 
for f ,  is the singular value decomposition - widely referred to as SVD. If 
K is a compact linear operator then it maps K : X ~-~ Y and two sets of 
orthonormal basis funct ion-  {Uk} and {Vk} exist for the ranges of K and its 
adjoint K* respectively. There also exist a set of singular values {Gk} that  
determine the mapping from X to Y such that:  

KUk = O'kVk (4) 

K Vk = O'kUk 

(u j ,  = 6j,  (5) 

Thus, the SVD of a system - {ak, Uk, Vk} - depends on the support  of the 
object, the support  of the image and the form of the kernel. In analogy with 
Fourier analysis, the increasing index k corresponds to an increasing measure 
of spatial or temporal  frequency. Because Uk is a basis set for X, and Vk is a 
basis set for Y, it is simple to decompose both the object and the image into 
a weighted sum of these basis functions, 

No 

f = g ( f ,  Uk)Uk 
k = l  

Ni 

g -  E ( g ,  Vk)Vk 
k----1 

(6) 

where (a ,b )  : alba + a2b2 + . . .  + a N b N  for a and b being N-dimensional 
vectors. 

The standard method of recovering f from g, first performed in a simpli- 
fied case by Slepian & Pollak (Slepian & Pollak, 1961) may be formulated as 
follows. From (6), the sampled data may also be written as: 
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Ni 
g = Z (g' Vk)Vkerk 

k = l  O'k 

Which, from (4), is equivalent to: 

g l  
g : ~ (g 'vk/KUk 

O- k 

Ni 

k = l  Gk 

= K f  

Which, when equating the last two lines, yields the inversion: 

Ni 
f = <g, vk>nk (7) 

0" k 
k = 1  

However, this solution is still very much ill-conditioned due to ~k --+ 0 as 
the index k increases. It is clear that  (7) must have the summation stopped 
at some stage if there is to be any chance of a successful inversion. What  
happens in practice is that an index is chosen (R < Ni) where it is decided 
that  experimental noise has effectively hidden the basis function weighting 
coefficients. This acts as a regularising parameter and gives the Truncated 
Singular Value Decomposition solution. 

R 

= Z (g' Vk)Uk (S) 
Cr k 

k = l  

In essence, SVD elucidates the underlying mathematical  structure in any 
situation described by (1) in a way which is most effectively related to the 
physical problem involved. It gives a method of partitioning "noise space" 
from "signal space", using the singular value spectrum, which minimises the 
effects of physical noise, and is widely used in many problems in science and 
engineering. 

2 A i m i n g  f o r  a P o s i t i v e  S o l u t i o n  

In many situations (e. g. Incoherent Imaging and Photon Correlation Spec- 
troscopy - P. C. S. ) it is known that  f is non-negative. However, when a 
TSVD solution is formed from the data, it is discovered that  f contains neg- 
ative regions. In the noiseless case this is solely due to the summation cutoff 
at index R. In the presence of noise the case is worse still, due to the weights 
of index k < R being slightly perturbed from their true values. 

Another way of comparing the object, and the TSVD approximation to 
it, is the following: 
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f= ~ (g2Y--k)uk-~- ~ ( g ' V k ) u k  
o- k O- k 

k = l  k=R-t-1 

c .k 
Cr k 

k = l  k----R+l 

ck =_0 

(9) 

It is the choice of ck = 0 that  produces the unwanted negative regions. 
However, it is only because there is no reliable information about {ck} which 
leads to the arbitrary choice of setting them to zero. On the other hand, if 
this causes negative regions in the reconstruction, it is immediately obvious 
that  this choice for the values of {ch } is incorrect. The task, then, is to try to 
find a choice for {Ck} that  leads to a non-negative reconstruction, with low 
order components equal to those of the TSVD solution. 

2.1 M a t h e m a t i c a l  P r o g r a m m i n g  

Mathematical  programming is the general term used to describe the branch 
of mathematics  concerned with choosing values for a set of variables, subject 
to various constraints placed upon them. Probably the best known subset 
of Mathematical  Programming is called "linear programming".  Problems of 
this type can be described by the following set of relations: 

Minimise  

S u b j e c t  t o  the  constraint ,  

f = dl cl + d2c2 + ' " +  d,~ c~ 
a l l C l  -t- a12c2  - I - . - ' - ~  alncn ~ bl 
a 2 1 c l  -t- a22c2  - J r - ' " - t -  a2ncn -~ b2 

amlCl n t- arn2C2 n t- "" "-I- amnCn -'~ brn 
ci > 0 (i = 1 , . . . , n )  

The Simplex Method is a procedure for solving such a set of equations. 
In brief, the method finds a basic feasible solution, calculates the direction 
that  will decrease f and moves in that  direction until one of the constraints 
is about to be violated. At that  point the routine selects a new direction for 
decreasing f .  In this manner the optimal set of {c.} is found that  minimises 
f while still satisfying the linear constraints. It is a feature of linear program- 
ming, in the case of zero degeneracy, that  the solution is always to be found 
on a vertex of the n-dimensional volume defined by the constraints. 

Quadratic programming has a very similar definition to that  of linear 
programming, but is not so straightforward to solve. Using matr ix  notat ion 
for the definition we have: 
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M i n i m i s e  F(c)  c E T~ n 

S u b j e c t  to  t h e  c o n s t r a i n t s  1 < { D e }  < u 

Quadrat ic  Programming F(c)  = eTc + ½cTAc 
Least Squares F(c)  = eTc  + ½ l i b -  Ac[I 2 

This notat ion is based upon that  used in (NAG, rev. 15). In all of the work 
so far undertaken the routine has always been used in the least squares mode,  
with the choice of {e~ } _= 0. As will be shown in the following section, the least 
squares mode is ideal for minimising certain aspects of the reconstruction. In 
the above notation,  c represents the set of unknown basis weights, {ck}, and 
D is an array, formed from the u basis functions, which along with 1 and u 
are used to ensure positivity. The mat r ix  A was formed so as to implement  
the various opt imisat ion choices. 

2.2 W h a t  C h o i c e  for  {Ck} 

Borwein and Lewis (Borwein ~z Lewis, 1992) showed tha t  there is a unique 
choice for {Ck} tha t  leads to a non-negative TSVD reconstruction with min- 
imum L 2 norm. It  may  be tempt ing  to hope that  since there is a unique 
choice of {ck} tha t  produces the min imum L 2 norm, it must  be the original 
object. Unfortunately (fortunately for those wishing to pursue a career in 
inverse problems) this is not the case. The explanation is fairly simple; there 
is nothing to say that  the original object has to be the positive, m i n i m u m  L 2 
norm realisation for the first R values of (f,  Uk}. 

This leads to an arbi trary choice having to be made about  the recon- 
struction. It  has already been decided that  {ck} should be chosen to ensure a 
non-negative TSVD solution - but that  constraint is not enough to ensure a 
unique solution. Thus, one of many  possible choices must  be made  for {ck}. 
Let f represent the TSVD solution with possibly non-zero values of {ck} 
added to ensure positivity. The various opt imisat ion choices so far studied 
include: 

- Minimise E I}7 
- Minimise E l}'l 2 

- Minimise (1 - a)  E It'l + a E Ifl s 

- Minimise E 1~-~t 2 
o2~ [2 - Minimise ~ o ~  

It  is obvious tha t  there are an endless number  of these minimisat ion 
choices; each one capable of producing a different positive f tha t  exactly 
fits the da ta  to within the noise level. Indeed, for certain choices of norm - 
such as the min imum L 1 norm - the situation is even worse than this. While 
the L 2 norm is strictly convex, the L 1 is only convex. This means there is a 
possibility that  the solution with min imum L 1 norm may  be degenerate, i. e. 
there may well be an infinite number  of different solutions tha t  have exactly 
the same min imum L 1 norm. 
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2.3 I n c l u d i n g  Constraints and Optimisations 

As indicated in section 2.1, the constraints for the system are specified by 
the system of equations: 

c } < u  
1 <  D c  - 

The first of these constraints, l < c < u, imposes some constraint  on the 
values that  the missing higher order basis weights are allowed to take. In all 
cases so far studied there was no a priori knowledge to suggest there should be 
any limit on these values. Hence, 1 and u were set to - ~  and ~ respectively. 
D is known as the "Constraint  Matrix",  and is used to specify constraints on 
the form of the reconstruction. Examining the case of imposing posit ivi ty on 
point i gives, f rom (9): 

R Ni 

](i) = ~ (g'vk) uk(i) + ~ ck.uk(i) 
O" k 

k----1 k----RT1 

Ni 

= f(i)  + Z Ck.uk(i) 
k = R T l  

Introducing the constraint of 0 < ](i) < oo then gives: 

o < / ( i )  <_ 
N, 

:*  0 <_ ](i)  + ck.' k(i) <_ 
k = R + l  

Ni 
: .  - ] ( i )  <_ E ck.,,k(i) <_ 

k = R ÷ l  

Recognising that  every point in the reconstruction (1 < i < No) must  be 
positive gives l = - f  and u = ~ .  Thus, the constraint matr ix ,  D, is such 
that  Dij = uj(i). The various minimisat ion schemes were included in a very 
similar manner  to this, with some aspect of the reconstruction equalling the 
corresponding aspect of f plus some combinat ion of the higher order u basis 
functions. 

2.4 W e a k n e s s  o f  the Positivity Constraint 

Some recent reports have claimed methods of superresolution 1 based on con- 
straining the restoration to be non-negative. It  will be shown here that  the 
positivity constraint is not sufficient to accurately accurately the missing 
spatial frequencies. 

1 A restored image could be said to be superresolved when it contains accurate 
high spatial frequency components that are not detectable in the collected data. 
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Imagine two non-negative objects, 81 and 82. such that  for the first R 
singular functions (81, Uk) = (f2, uk). Both fl and f2 will have identical images 
and TSVD solutions to within the noise level. Now suppose that  fl is double 
peaked, and f2 is single peaked. Finally, take it that  fl just happens to be a 
L 1 minimisation, and 8~ the L 2 minimisation, for the first R fixed weights. 

Suppose f2 is imaged, the data  collected, and the TSVD solution formed. 
This will most probably contain negative regions, so it may be desired to find 
a choice for {ck} that  ensures positivity. If the L 2 minimisation criterion is 
chosen then the original object is recovered exactly, since 8~ is defined to have 
this property. However, if the L 1 minimisation criterion is instead chosen, the 
restored object is not 82, but something similar to fl (identically equal to in 
the non-degenerate case). But it is not enough to select the L 2 choice again 
in the future just because it has worked so well this time. If the experiment is 
repeated with fl being imaged instead of 8~, it turns out the L 2 minimisation 
will return a very poor reconstruction of the original object - which would 
again be equal to fl for a non-degenerate problem. 

3 F u r t h e r  C o n s t r a i n t s  i n  D i f f e r e n t  S i t u a t i o n s  

A proper choice of minimisation criterion is dependent on the form of the 
original object. However, since it is the form of the object that  the process is 
trying to recover, the choice of minimisation criterion is not much better than 
a pure guess. Fortunately, some inverse problems outside the realm of imaging 
lend themselves to further a priori constraints beyond that  of positivity. 

In P. C. S. (Cmnmins ~ Pike, 1974) accurate values of the "area" of 8, and 
the "centre of mass" of 8 are known. These are the first two moments of the re- 
construction. In work on high temperature superconductivity (C. E. Creffield 
et al, 1995), a reconstruction of the "Spectral Weight Function" is required 
from "Matsubara Green's function" - another ill-posed inverse problem in- 
volving analytic continuation. In this case it is possible to calculate exactly 
the first three moments of the reconstruction. Using this extra a priori infor- 
mation narrows down the range of possible functions that  still fit the da ta  
and the a priori information to within the noise level. 

3.1 A n  E x a m p l e  f r o m  High-To S u p e r c o n d u c t i v i t y  T h e o r y  

The particular inverse problem in this situation is 

= 1 +  exp(-fl ) 

where g(y) is the numerically calculated Matsubara Green's Function, and 
f (x )  is the Spectral Weight Function - the desired function. The "nth-moment '' 
of a function is defined as 
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F #,~ = x n f ( x )  d x  (11) 
o o  

In the case studied, not only was it known tha t  the reconstruction had 
to be non-negative, but  also values for #0, #1 and p~ could be accurately 
precalculated. These moment  constraints were built into the quadrat ic  pro- 
gramming routine in much the same way as the posit ivity constraint.  T h a t  
this was able to be done relied on the linearity of the problem. Making use 
of (6) leads to: 

F F x ' ~ f ( x )  d x  = x ~ f ,  uk)uk d z  
o o  c o  k 

) = f - -  (f, Uk)Uk + CkUk dx 
d . -  c o  k = R + l  

F = x '~ f" d x  + ck x '~ u k  d x  (12) 
c o  k = R q - 1  c o  

This means that  the n th moment  of the final reconstruction is equal to the 
n th moment  of the TSVD solution, plus a weighted sum of the n th moments  
of each of the higher order basis functions. In practice, if m moments  are to 
be used as constraints, and No - R higher order weights are to be found, the 
rn moments  of each of the No - R functions are precMculated. These are then 
used as part  of the general constraint mat r ix  in the quadrat ic  p rogramming  
routine. 

4 C o n c l u s i o n s  

It  has been shown that  it is possible to add weighted amounts  of the un- 
measurable higher order uk basis singular functions by using the technique 
of quadratic programming.  This can be easily adapted to fit any linear con- 
straints - such as known coefficients for the first N singular functions in the 
expansion, positivity and known moment  values. Once the constraints have 
been met it is then necessary to specify some further opt imisat ion condition 
- such as the reconstruction possessing min imum L 2 norm - and, having done 
this, our numerical work confirms and implements  the Borwein-Lewis unique- 
ness theorem (Borwein & Lewis, 1992). The choice of minimisat ion criterion 
is purely arbi t rary - with no one choice working well in all cases. Once one 
has chosen to guess unmeasurable components  of the solution to make it pos- 
itive, using these methods or any of the many  alternative iterative nonlinear 
methods,  there will be an infinite family of solutions which all fit the da t a  
to the same accuracy and which m a y  differ widely. The u tmost  caution is 
therefore required if non-linear methods are used since any apparent  increase 
in resolution over that  of the TSVD solution could be spurious. 
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Abs t r ac t .  I prove that the high velocity limit of any one of the Dollard scatte- 
ring operators of an N-body quantum mechanical system with long-range t ime- 
dependent pair potentials determines uniquely the potentials. I also show that in 
the particular case when the potentials go to zero fast enough as time goes to plus 
and minus infinity it is not necessary to introduce a modified Dollard time evolution 
and that pair potentials that decrease slowly as the interparticle distances go to 
infinity (for example Coulomb potentials) can be Uniquely reconstructed from the 
high velocity limit of the canonical scattering operator with unperturbed evolution 
given by the free Hamiltonian.These results are obtained from reconstruction for- 
mulae with bound of the error term that I prove with a simple time-dependent 
method. 

1 I n t r o d u c t i o n  

In this paper  I s tudy the inverse scattering of an N-body  quan tum mecha- 
nical system of particles in n >_ 2 space dimensions with interactions given 
by t ime-dependent  local pair potentials of long range.I prove tha t  the high 
velocity limit of any one of the Dollard scattering operators  determines uni- 
quely the potentials.I  also obtain a formula with bound of the error t e rm for 
the constructive reconstruction of the potentials. 

I prove these results in Section 2 by extending to this case the simple t ime -  
dependent method of Enss and Weder (1993),Enss and Wader (1994),Enss 
and Weder (1995a), Enss and Weder (1995b),and Wader (1995) where t i m e -  
independent potentials are considered.In fact it is quite remarkable  tha t  due 
to the t ime-dependent  nature of this method the t ime dependency of the 
potentials poses essentially no new problems.The basic physical intuition here 
is that  during the short t ime interval in which a high velocity state remains in 
the interaction region the potential  changes very little and it is approximate ly  
t ime independent.I  can even consider pair potentials tha t  grow to infinity 
in t ime provided that  they go to zero fast enough when the corresponding 
interparticle distance goes to infinity. 

Moreover, in the t ime-dependent  case the border line between sho r t -  
and long-range potentials is not always given by the decay of the Coulomb 
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potential.I consider in Section 3 pair potentials that  go to zero very slowly 
as the interparticle distances go to infinity but that  go to zero fast enough as 
time goes to plus and minus infinity.For example potentials that  behave as 

V ( t , x )  ~ C(1 + [tl) - ~  (1 + Ix]) -p  ,c~ > 0, 1/2 < / 3  _< 1 , a  + / 3  > 1 , 

as ]t I ~ oo ,and ]x] --~ oc .An important  particular case are potentials of 
compact support in time.This corresponds physically to (external) potentials 
that  are turned on and then switched off after some (short)t ime.For this 
potentials it is not necessary to introduce a modified time evolution. 
I also obtain in this case a formula with bound of the error term that  allows 
me to uniquely reconstruct the potentials from the high velocity limit of the 
canonical scattering operator defined with the unperturbed time evolution 
given by the free Hamiltonian. 
As is well known there are many inportant  applications of scattering with 
t ime-dependent  potentials,for example the charge transfer model .I discuss 
this literature at the end of Section 2. 

There is an extensive literature on multidimensional inverse scattering for 
the Schr6dinger equation with t ime-independent  potentials.See for example 
the references mentioned in Enss and Weder (1995a) and the books by Cha- 
dan and Sabatier (1989)and Newton (1989) .However much less was known 
in the case of t ime-dependent  potentials.This is perhaps so because many 
of the previous results for time independent potentials where obtained with 
stat ionary methods.Start ing with the work of Perla Menzala (1985) there 
are a number of papers that consider the inverse scattering problem for the 
wave equation with time dependent potentials.See Stefanov (1989) and the 
references quoted there.In Ramm and Sj6strand (1991) the uniqueness of an 
inverse data problem for the wave equation with time dependent potential  is 
proven. 

2 N - B o d y  I n v e r s e  S c a t t e r i n g  

Let ~j E R ~ and mj,j = 1 , 2 , . . . , N  be respectively the positions and the 
masses of the particles.The free Hamiltonian is given by 

N 
~2 H0 =  (2mj) -1 = -iV j 

j = l  

As usual I formulate our scattering problem in the total center of mass frame 
and I substract the Hamiltonian of the center of mass: 

- 1  2 
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The free Hamiltonian is then H0 := /)0 - H C M .  The space of states in the 
center of mass frame is a gilbert space,7-/, that  in configuration space is 
represented by wave functions ¢ in 

L2(X) , X : :Xl, . . . ,  X.N) m j x j  = 0 "~ R n(N-1) 
j=l  

measure induced on X by the norm in R '~N [ ~ N  ~ ]  
1/2 

with the , j=l  m j  . The 
J 

set of momentum space wave functions,C, is given by 

L~(:~) ,X = 0 5 1 , . . . , / , N )  Y ~ j  = 0 ~ R "(N- l )  
I j = l  

N - i ~ 2  1/2 where give to X tho dual norm induced by [ Z ; : l  ) onR  .The 

Fourier transform is a unitary operator from L2(X) onto L 2 ( X ) . H o  is a self- 
adjoint operator in L2(X) with domain D ( H o )  = H~(X) ,the second Sobolev 
space.For a general reference in multiparticle scattering see,e.g.,Reed and 
Simon (1979). 

I suppose that  the potential is a sum of pair potentials that  are multipli- 
cation operators by real-valued functions 

v = ~ 5~(t, ~ -  ~j) 
j<k 

I split each pair potential into parts of short and long range depending on 
their decay rate at infinity and their differentiability 

~k( t ,  ~k - ~ )  = v ~ ( t ,  ~ - ~,~) + v j~( t ,  ~ - ~,~) 

An operator in L2(R '~) is said to be Kato-small  if it is bounded with respect 
to the Laplacian with relative bound zero(see Kato (1976) for definitions).For 
any set O C R ~ I denote by F (x  E O) the multipli~.ation operator by the 
characteristic function of O.I defne the following class of short-range poten- 
tials. 

D E F I N I T I O N  2.1. ]2sR denotes the class o f  potentials 

v S -  - ~ ~ : ( t , ~ -  :i~) 
j<k 

where for  each fixed t S R ,  VjSk(t, y) is Ka to - sma l l  and 

[[V3fk(t , y ) ( - -Ay q- I) -1 [[ < C(1 + [tl) M (1) 
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for some constants C and M.Moreover, for every q E R there is a vo > 0 and 
a function h with h(r) 6 L 1 ((0, cxD)) such that for all r 6 R 

[ [ V j ~ ( r / v + q , Y ) ( - - A y + I ) - I F ( I Y [  > Irl)[[ < h(Irl) (2) 
for all v > vo. 

Condition (2) is equivalent to the existence of a v0 > 0 and a function h with 
h(r) 6 LI((0, oo)) such that for all r 6 R 

IIF(lyf > + q, y ) ( - A y  + I) -1[ i  < n(Irl) . 

This decay condition is more intuitive,but (2) is technically more convenient. 
I denote by C ~ ( R  n) the space of all continuous functions that  go to zero 

at infinity and that  have continuous derivatives of all orders up to u.By D~ 
I designate the derivatives with the usual mult i- index notation.I  define my 
class of long-range potentials as follows. 

D E F I N I T I O N  2.2. VLR denotes the class of potentials 

v 
j<k 

where for each 1 xed t R ,  Y) CI (R and 

D~,V/k(t ,y)  < C(1 + ]t[) ~ ( 1 +  [y[ ) - l - r~ l (7-1)  1 _< [a[ _< 2u , 

for some non negative constants C, e, 7 with 7 -  e > 3/2 and u > 2 

(3) 

To simplify the notation later I will only use 7 < 2. 
The spliting of the potential into short-  and long-range parts is not uni- 

que.In what follows I take one spliting and keep it fix. Note that  the shor t -  
range part  of the potential is allowed to grow in time as fast as any power of 
t in any compact region of space.On the contrary, the long-range part  that  
contains the tail of the potential that  decays slowly at infinity and that  in 
consequence acts upon the particles during quite a long time is only allowed 
to grow slowly as It] --* oo and this provided that  there is enough decay 
as [y[ --+ oo.This is the meaning of the condition 7 - e > 3/2 in (3). The 
interacting t ime-dependent  Hamiltonian, defined as 

H(t)  = Ho + V(t)  , 

is a self-adjoint operator with domain D(H( t ) )  =- D(Ho). I make the as- 
sumption that  there is a unitary propagator that generates the time evolution 
corresponding to H(t). 

A S S U M P T I O N  P. I assume that lhere is a family of unitary operators 
in 7"l,U(t, q), t, q G R,  such that 
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1. u(t ,  q) is a strongly continuous function of (t, q) C a 2. 
2. U(t, r)U(r, q) = U(t, q) for all t, q, ~ ~ R.  
3. U(t,q) H2(X) C H2(X) for allt, q E R and if q~ E H2(R~),U(t,q)4'is 

strongly continuously differentiable in t and q and 

i~--~U(t,q)~= H(t)U(t,q)~; i~--~U(t,q)q~=-U(t,q)H(q)q5 . (4) 

Starting with the pioneering work of Kato (1953) there is an extensive litera- 
ture on the derivation of sufficient conditions for the validity of Assumption 
P.See for example Kato (1970), Yajima (1987) , Yajima (1991) and the re- 
ferences mentioned there.The results in Yajima (1987) and Yajima (1991) 
contain most of the interesting applications,including moving singularities.A 
simple set of sufficient conditions is the following one. Suppose that  each pair 
potential Vjk(t, xk - x j  ) is Kato-small  and that  the operator valued functions 

Vjk(t, y)(--Ay + I) -1 

are strongly continuously differentiable functions of t E R .Then  it follows 
from TheoremX.70 and the proof of TheoremX.71 of Reed and Simon (1975) 
that  Assumption P is satisfied. 

The Dollard modified time evolution in the free channel is generated by 
the t ime-dependent  Hamiltonian 

H.(t )  = Ho + ~ ~ : ~ ( t , t p ~ / . ~ )  
j<k  

where pj k and pj  k are, respectively, the reduced mass #j k = mj rnk / (mj + 
ink) and the relative momentum Pjk = #jk(f)~/mk -- fJj/mj) of the parti- 
cles j and k. The Dollard propagator is the following unitary multiplication 
operator in momentum space 

] ul~(t, q) = ~-~(~-,)-o exp - i  dr ~ ( ,~ ,  r p j ~ / ~ )  (5) 
l_ j<k q 

Clearly, differcnt splitings into shor t -  and long-range parts of the pair po- 
tentials give rise to different Dollard propagators. The modified Dollard wave 
operators for the free channel with initial t ime q are defined as 

~ ( q )  = s - -  lira U(q,t)uD(t,q) . (6) 
t - -* : [ :~  

The existence of the strong limits is proven below (see the argument star- 
ting with (32)).The modified Dollard scattering operator between the free 
channels with initial t ime q is given by 

SD(q) ---- (~2~(q))* Kjn(q) . (7) 
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I reconstruct the pair potentials one by one .For any given pair of particles I 
introduce as in Enss and Weder (1995a) appropriate  states where all particles 
have high relative velocity with respect to each other.I  first introduce some 
kinematical  notat ion.I  number the particles in such a way tha t  the given pair  
consists of particles one and two.I take as one n-dimensional  coordinate the 
relative distance x and the corresponding relative m o m e n t u m  p of the given 
pair (12) 

x : =  , ~  - " ~ 1 ,  p : =  - i V x  = ~ , , ~  [(-iVx2/m2) - ( - i V x , / m , ) ]  . 

By xj and pj  I denote,respectively, the position and the m o m e n t u m  of the 
j - t h  particle, j  = l, . . . ,  N, relative to the center of mass of the pair (12) 

x~ := ~ - (m1~1 + m 2 ~ ) / ( m l  + m~), (8) 

~s := ,~(~j/m~ - (~, + ~ ) / ( m l  + m,)) , 

where #j is the reduced mass of the j - t h  particle with respect to the center 
of mass of the pair (12) 

#j := mj(ml +m2)/(mj + m l  + m 2 ) ,  j = 1 , . . . , Y  . 

{x, x 3 , . . . ,  xN}and{p,  P3, • •., pN}are  sets of N-1 independent n dimensional 
configuration and momentum coordinates in the total  center of mass frame. 
pj/pj , j  :- ],..., N , is the relative velocity of particle j with respect to the 
center of mass of the pair (12). The  relative m o m e n t u m  of particles j and k 
is 

Pjk = -iXT(Sck_Scj), j , k  = 1 , . . . , N  , 

and their relative velocity is 

Pjk _ P/¢ P j  __ pk PJ ,  j, k = 1, . . . ,  g . (9) 
Pj k mk mj  ttk ~j  

Let ~50 E 7-/ be an asymptot ic  configuration with product  wave function 
of the following form in m o m e n t u m  space ( ^ denotes Fourier t ransform) 

tP0 "~ ¢12(P) q~3(P3,. . . ,  PN) , (10) 

where ¢,2 E C ~ ( R  n) varies while ¢3 E C ~ ( R  " (y -2 ) )  is a fixed function 

normalized to one, ]1¢311 = 1. The high-velocity state is defined as follows 
(see Snss and Weder (1995a)) 

~ v  "~ ¢12(P - # 1 2 v )  q~3(Pa - #av3, . . . . ,  PN - #NVN) (11) 

where v = v~-, [(rl = 1,v3 = v 2ej ,wi th  ej ~ 0,ej ~ e k , j  ~ k, for j , k  = 
3 , . . . ,  N . I  define also vl  = - vm/ml  ,and v2 = vm/m2.I denote by 

v j k = v k - - v j ,  vjk=lvjkl, j , k = l , . . . , N  
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,respectively,the approximate relative velocity of the particles j and k and its 
absolute value.It follows from my definitions that  

Vjk = v2(ek -- ei) # O, j , k = 3 , . . . , N  , 

m 
v2j = v2(ej m ~)  ¢ Oifv > ( e j )  -1  

rn 2 v m2 

m , ~  
Vlj = v 2 (ej n k- ~l-lv ) ¢ 0, ifv > rn(ej)-ttrtl 

where ej = ]ejt.Note that  

N 

~ V  ---- el/~12V'X 1 - I  e i l z j V j ' X j  ~ 0  • 

j = 3  

Then in the high-velocity state the approximate relative velocity of the pair 
(12) is v while all other particles travel with minimal velocity proporcional to 
v ~ relative to each other as well as relative to the particles in the distinguished 
pair. 

T H E O R E M  2.3.(Reconstruction Formula) Suppose that V s @ ]2SR, V L E 
l/Ln,with U >__ M 4- 1, that Assumption P is satisfied, that for every q5 C 
H~(R '~) the function t -+ V22(t,y)¢ is strongly continuous from n {~to 
L2(R '~) and that for some 1 < a < n and all • C L2(R '~) the function 

( o VJ ~lt t --~ t 0---~ 12J~ ,y)4~ is strongly continuous from R into L2(Rn) .Then for all 
45v, ~v  as in (11) 

V[ ] im iv([SD(q),pa]~v,~v) = dv (V~2(q,x + r~)pa~12,~12) 
oo 

-(v?~(q,x+~*)el~,poe12) +i d~((  ~)(q,x+,,)~12,el~) (12) 
co 

for all q G R.  

Remark that  it follows from (2) and Fatou's lemma that  for all ~b E L ; ( R  ~) 

j ? d r  Vl~2(q, y) Irl)+ ( - A y  + I) -~ F(lYl > _< 
oo 

liminfv~c¢ j_~/~ dr V [ 2 ( r / v + q , y ) ( - - A y  + I )  - 1 F ( l y  [ _> Irl)~5 < c~ .(13) 
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Then for all • in the space of Schwarz 

/_~  d7 v~)q~ /_~° dv V~2(q,y V;2(q , y + _< + r + ) ( - - A y  + 1) -1 
(X) OO 

F( [y  + r'~[ > [~-/2[) ( - -Ay + + V~2(q, y + v~r)(--Ay + I) -1 
J - -  Oo 

F(lyl  _> IT/21) ( - A y  + I )~  < oo , (14) 

where I used (13) and the rapid decay of q~ in configuration space.It fo- 
llows that  the integral in the first term in the r ight-hand side of (12) is 

a t t well defined.Since (o-~V12)( ,y)  satisfies (13) (in this case the regulariza- 

tion (-ZSy + I) -1 is not necessary) also the integral in the second term in 
the r ight-hand side of (12) is well defined. Formula (12) tells us that  from 
the high-velocity limit of the commutator  with p~ of the modified Dollard 
scattering operator with initial time q we reconstruct the scalar product  in a 
dense set of states of the Radon (or X-ray)  transform of the "derivative" with 
respect to Xa of the potential Vlu(q, x) at the same initial time q.This subs- 
tanciates the remark made in the introduction that  in the high-velocity limit 
the potentials can be considered constant during the scattering time. Moreo- 
ver (12) gives us enough information to uniquely reconstruct the potential  in 
a constructive way. 

C O R O L L A R Y  2.4. Suppose that each one of the pair potentials Vjk 
satisfies the assumptions of Theorem 2.3. Then if (the high velocity limit of) 
any one of the Dollard scattering operators S n (q) is known for all q E R the 
potential is uniquely defined. 

Remark that  it follows from the definitions in (6) and (7) that  for all 
ql, q~ G R 

S D(q2) = U D(q2,qt) S D(ql) U D(ql,q2) . 

Then if the long-range part of the potential is a priori known and we know 
SD(ql) for a fixed ql, we know SD(q) for all q E R.I t  follows that  in this case 
it is enough to know SD(q) for only one q to uniquely reconstruct the po- 
tential.In particular when V L -- 0 the modified Dollard wave and scattering 
operators coincide with the canonical ones 

~2±(q) --- s -  lim U(q,t) e -i(t-q)"° 
t--* ± oo 

S(q) = (Y2+(q))* ~2_(q) , 

S(q2) = e i<ql-q2)H° S(ql) e -i(ql-g2)H° 
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and the potential V is uniquely reconstructed from the canonical scattering 
operator S(q) at only one initial time,say q = 0. 

To estimate the rate of convergence in (12) we have to strengthen the 
continuity in t of the potentials. 

C O R O L L A R Y  2.5. Suppose that the hypotheses of Theorem 2.3 are sa- 
tisfied, that for each q E R there are Pi > 0 and functions Qi(y),  i = 1, 2 such 
that for every function g E C ~ ( R  n) the operators Qi(y)g(p)are bounded and 

IV?2(t + q,Y) - VF2(q, y)l < I t lmQl(y) , 

( V]2)( t - t -q ,Y)- ( -~gV12)(q ,Y)  < ItF~Q~(y) 

and 

o ~ d r ( l + r ) p '  IIQ~(Y) g(p)F(lYl _>r)[I < i =  1,2 

and that for some 0 < pa <_ u - M -  1,all g E C ~ ( R " )  and all q C R, there 
is a vo > o and a function h with (1 + r)P~ h(r)  ~ LI((0, o~)) suoh ~ha~ for 
all r E R 

IlV~2(r/v+q,y)g(p)F(lyl>_ Irl)ll _< h(Ir]), v > v o  . (15) 

Then for all ~v ,  ~v as in (11) 

i'v([SD(q),pa]~)V,kY]V) : dT (Y~2(q,X ~- T~C)Pa~12,~]12) 
O 0  

--(V~2(q, xq-v~c)q512,pak~12 ) q - i  d~'(( 2) (q, x q- r~r)~12, khl2) 
CO 

+O(v - m ) + O ( v  -p=)+o(v-'7),  rl<_Pa, rl< 7 - e - 1  

as v ----+ (x). 

Condition (2) implies (15) with Pa = 0. Larger p means faster decay as 
lyI~oo.  

I now prepare some results that I use in the proof of Theorem 2.3 and its 
Corollaries. It follows from (8) that 

[ ] ( l + ] ~ - R j [ 2 ) ' * O v [ [  <_C, j , k =  l , . . . , N  . (16) 

Equation (9) implies that there are functions fjk E C~°(R '~) such that 

q~v = f j ~ ( p j k - # j k v j k ) o v ,  1 < j < k  < N  . (17) 

I denote by 5r(t, q) the correction term in the Dollard propagator 

U(t, q) := exp - i  E dr Vj~(r, rp jk /# jk )  (18) 
j<k 
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As in the proof of (4.16),(4.17) and of Proposit ion 3.1 of Enss and Weder 
(1995a) I prove that  for each q E R there is a constant v0 > 0 such that  for 
all v _> v0 

(xk -- x j )  U( t ,  q) J'<~'H f j 'k '(Pj 'k' -- #j,k,vj,.k,) (1 + I~k - ~¢ I ~)-~/~ 

_< C(1  + vjklt - q l )  2+~-~ , (19) 

1 _< j < k _< N,with  e and 7 as in (3) and that  for A > 0 and u as in (3) 

r(l~k-- ~jl > AvikIt-q 0 (](t,q) I - I  f j ' k ' (P j ' k ' - -# j , k , v j , k , )  
j'<k' 

( ( 1 + Ixk :-  "~j] 2 ~ C l + v j k l t - q  , (20) 

for some 6 > 0 tha t  depends on u, e, and 7. 
The following relations ,that I will use frequently, are obtained under trans- 

lation in configuration or momen tum space: 

e i V V t f ( x ) e - i P V t  = f ( x  + v t )  , (21) 

e - i m v X f ( p ) e  i ' ~vx  = f ( p  + m y )  

for any bounded measurable function f, m > O, and in part icular  

(22) 

e-imVXe-itp2[2rneirnV'X = e - ip 'v t  e-itp2[2me-irnv2t[2 (23) 

where v = Ivl. 

L E M M A  2.6. Suppose that V s G Vs1~, V L E ]]LR with u > M + 1 + p, for 
some p > 0 and that for all g E C ~ ( R  n) and all q E R there is a ~o > 0 and 
a function h with (1 + r)Ph(r) E Ll((O,oo)) .such that Vj~ satisfies (15) for 
a l l v >  ~o. Then for each q E R and fj,~, G C ~ ( R ~ ) ,  1 < j '  < k' < N, there 
is a function h wilh (1 + r)Ph(r) G LI((O, ~ ) )  and a vo > 0 such that for all 
Y~Vo 

v ~  ( t, ~,~ - ~ j ) u D (  t, q) J'<~'1-I fj ,k,(Pj,~, - m,~,vj ,k , )  (1 + I~k -- ~jl~) =~ 

h ( v j ~ l t  - q l )  • (24) 
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Proof." Take g E Cg°(R ~) with g = 1 on the support of f j ~ . L e t  us denote by 
I the left-hand side of (24). Then I < I1 + I~ + Ia,where 

I1 = Vj~(t, :~ - :~j)g(pj~ - # j k v j k ) F ( l ~ k  -- ~j  -- v j k ( t  -- q)] 

>_ vjklt - q] 5/8) e - i ( t - q ) P ~ k / 2 " j k g ( p j k  -- # j k v j ~ ) F ( ] ' x ~  -- x j[  <_ vj~ 

J t - - q l / 8 ) ( J ( t ' q )  Y I  f J ' ~ ' ( P J ' ~ ' -  pj,~,vj,~,)(1 + I '~k- ~jl2)  -~' , 
j~<k' 

(25) 

I2 = lll/'jsk(t,~CJ: -- ~cj)g(Pjk -- t t jkVjk)F([Xk -- Xj -- Vjk(t -- q)] >_ 

Vjk,t-- q'5/8)e--i(t--q)P~k/2~'kg(pjk -- # jkVjk)F( 'xk  -- Xj' > Vjk[t -- q[ /8)  

(7( t ,q)  I-[ fJ'l~'(PJ'k' -- PJ'k'vJq¢')( 1 -t- ]xk -- ~j]2) -~  , (26) 
jt<k~ 

Ia = Vfk(t, Kk -- xj)g(P/k -- p j k v j k )  F(l~ck -- ~¢j -- vjk(t -- q)l 

< I t -- ql 5/8) e-i(t-q)p~/2~jk g(Pjk -- ~jkVjk)(](t ,  q) 

H f j , k , ( p j , k , - - p j , ~ , v j , k , ( l + l ' ~ k - - ~ j ] 2 )  -~ , (27) 
j'<k' 

where I used that  H0 = p ~ k / 2 p j k  + Ho with a operator /]0 that  commutes 
with ~k - "~j (for example taking Jacobi coordinates). By (1) and (22) for 
vjk >_ vo with v0 large enough 

II 
I1 _< C (1 + I t l )Mt tF(I f% -- fej -- v j k ( t  -- q)[ > vjk[ t -- q[ 

g (P jk  - # j k v j k ) r ( l ~ %  -- Kjl < vjkI t  - q l /8 )  

( - - u - - 1  

_~ C(1 + [tl) M \1 + V j k l t -  ql , (28) 

where the last estimate is proven as in Lemma 2.2 in Enss and Weder (1995a) 
using rapid decay away from the classically allowed region (non stationary 
phase). Moreover by (1),(20) and (22) 

Z2 < C ( l + ] t l )  M ( l + v j k I t - q ] )  - ~ - ~  , (29) 
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and by (15) and (22) 

h(viklt - q[) (30) 

with (1 + r)Ph(r) E LI((O, oo)).The Lemma follows from (28)-(30) since u _> 
M + l + p .  

[] 

If V s E VsR and V L 

j '  < k' _< N 
E 12LR we have that  for all fj,k, E C~(R'~) ,  1 _< 

(Vj~(t,~k -- ~j)-- VJk(t,tpjk/pjk)) uD(t,q) j,~<k, fj,~,(pj,k, -- #j,k,vj,k,) 

(lnt-l'~k--:xjl2)-U ~ c  (l-t-vjkltl) -1-5 (31) 

for some 6 > 0.This estimate is proven using (19) and (20) as in the proof of 
equation (4.19) and Lemma 3.3 in Enss and Weder (19953). 

It follows from Duhamel's formula that  

jfq 
t 

U(q,t) un(t,q)qSv = Cv + i drU(q,r)E(Vjk(r,~k - ~j)-- 
j < k  

vj~(~, ~vj~/~,~k)) u~(~,  q)~v . 

Then by (15) with P3 = 0,(16),(17), (24) and (31) 

(32) 

F <_ drh(vjklr_ql)+ C dr(l +vjklrl)_l_ ~ <_ __C (33) 
oo oo V j k 

for some constant C. By (32) and (33) the strong limits in (6) exist if V s E 
];sR, V n E 1;LR with u > M + 1 and Assumption P is satisfied.Moreover, 
using again Duhamel's formula 

h:oc 
(U(t,q)~2~(q)-UD(t,q))qSv =i  fo dr U ( t , t + r ) ( H ( t + r ) - u D ( t + r ) )  

u ~ (t + r, q) Cv (34) 
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and I ob ta in  as in (33) t ha t  

ii(u(t,q) 2(q) c - - - ,  v _> v0 (35) 
V 

where C and v0 are un i form in t. 

Proof of Theorem 2.3: Since the Y2~(q) are par t i a l ly  i sometr ic  
(Y2 D (q))* ~2 n (q) = I and then  

- I ) ~ v  = i ( ( ~ 2 ( q ) ) *  - ( ~ - ~ ( q ) ) * )  i(SD(q) ~2_D ( q ) ~ v  

F = dtun(q,t)(H(t)--HD(t))U(t,q)tgD_(q)CPv (36) 
o o  

Noting tha t  [Sn(q),pa] = [Sn(q),pa --#12Va] and tha t  (Pa --p12Va)OV = 
(Pa~0)V I prove: 

F iv ([SD(q),pa]q~v, k~v) = d T / v ( v )  + R ( v )  (37) 
(x} 

with r = v(t - q) where 

lv(7-) = [(VS(v/v+q,x)UD(v/v+q,q)(paqSo)v,UD(v/v+q,q)~Pv) 

- <VS(T/v+q,x)UD(v/v+q,q)~Sv, UD(v/v+q,q)(pak~o)v)] +i 

(( o-~V]2)(r/v + q,q)UD(r/v + q,q)~v, UD(r/v + q,q)~Pv) (38) 

is the leading t e r m  and the remainder  is 

R ( v )  --- v ! [Vjk(t ,x)  - VJk(t, tpjk/pjk)]uD(t,q)(Pa~O)V , 
j < k : 3  oo  

uD(t,q)k~v) - ([~k(t, Xk -- xj) -- vjlk(t,tPjk/Itjk)]UD(t,q)qSv , 

uD(t,q)(Pa~O)V) }+  v j_:dt((uD(t,q)~D-(q) - uD(t,q))(PaqSO)V , 

Xk--Xj )-VJk(t,tpjk/#jk)]U D (t, q)~v  ~-v  / ~  dt ((U D (t, q)~2 D_ (q) EE k(t, 
j<k / J - o o  k 
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- U D (t, q))#v, E [Vjk ( t ,  x k  -- x j )  -- V]k( t ,  t p j k / p j k ) ] u D ( t ,  q)(Pa#0)v~ 
j<k  / 

(39) 
It follows from (24),(31) and (35) that  

R(v) = O ( 1 / v )  . (40) 

0 1 X Moreover since (o-~V12)() satisfies (1) and (2 ) i f  follows from (24) that  for 
V~Vo 

IIv(T)I h(r) (41) 
for some h(~-) • LI((O,  oz)).Furthermore, it follows from (21)-(23) that  for 
each fixed 7- 

lim Iv(v) --- q, x + TV)pa~12 , ~-[12 -- q, X "4- TV)~12 , 
V----cOO 

and it follows from (41) and Lebesque dominated convergence theorem that  

F [( ) lim d r  lv(7-) = dT- V?2(q , x + vCC)pa~12, ~12 
V ~ O0 , ] - - 0 0  O0 

~/s x + - - (  12(q, + 7~r)qS12,P akp12) + i((o~aV12)(q,x 7"v)~512,#12)] 

This and (40) yield (12). 

P r o o f  o f  Coro l lary  2.~: I prove this Corollary as in the proof of Theorem 1.2 
in Enss and Weder (1995a) . I  give details for the reader's convenience.Let us 
identify any z = (Zl, z2) E R2 with the vector zlca + z~c~ C R n with a # k 
and where c j , j  = 1,- .- ,  n denote the unit vectors along the zj direction in 
R ~. For any ~ , #  with ¢ ,¢  • C ~ ( R  n) I denote 

~5(z) := e - i P ' Z ¢ ,  kP(z) := e-lP'Z~P , 

and 
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The function f ( z )  is continuous,bounded and by the rapid decay of ~ in 
0 Ez x configuration space, (13) and a similar estimate for (b-~ l~)(q, ), f ( z )  E 

L2(R 2) .The Radon transform of f (z )  is given by 

f ] ( ~ , z )  = drf(z+~cr)  = lira iv([SD(q),pa]¢v(Z),q~v(z)) . 
oo v --+ oo 

Then I reconstruct the Radon transform of f ( z )  from the high velocity limit 
of [S ° (q), Phi and inverting this Radon transform I uniquely reconstruct f ( z )  
(see Helgason (1984) Theorem 2.17 in Chapter I).Finally 

~0  ° °  
(V12(q, x)~5, ~) = i dzl f (z l ,  O) 

and V12(q, x) is uniquely reconstructed as an operator and as a function for 
a.e. x in a constructive way. 

Proof of Corollary 2.5 :this Corollary follows as in the proof of Theorem 2.4 in 
Enss and Weder (1995a) estimating the rate of convergence of f_c~o~ dv /v (v )  
a s  v ----+oQ. 

If the long-range potentials are a priori known I can reconstruct the shor t -  
range potentials from the high velocity limit of the Dollard scattering ope- 
rator without taking the commutator  with a component of momentum.This  
follows as in Theorem 4.1 of Enss and Weder (1995a).I omit details. 

There is an extensive literature about direct scattering with t ime-  
dependent potentials.See for example Theorem XI.28 of Reed and Simon 
(1979),Yafaev (1980),Yajima (1980),Kitada and Yajima (1982),Kitada and 
Yajima (1983), Graf  (1990) , Wiiller (1991),Ito (1993),Ito (1995) and the 
monograph Cycon et a1.(1987) where further references are given.The papers 
Yajima (1980),Graf (1990) ,Wiiller (1991),Ito.(1993) and Ito (1995) s tudy 
the charge transfer model for the scattering of a (light) particle under the 
action of moving centers of force.This type of potentials are included in my 
class under appropriate conditions. 

3 S l o w l y  D e c r e a s i n g  P o t e n t i a l s  t h a t  V a n i s h  

A s y m p t o t i c a l l y  i n  T i m e  

In this Section I study the particular case of potentials that  tend to zero as 
t --+ ±oo.An important  physical example is the case of potentials of compact  
support  in time.This corresponds to a situation where a potential  is turned on 
and then switched off after a (short) time. An interesting aspect of this case 
is that  potentials that  decay very slowly as Ix] ---* oo are of short range in the 
sense that  no modified Dollard free evolution is required and the canonical 
wave operators exist provided that  the potentials go to zero fast enough as 
t --* ±cxD.The basic physical intuition here is that  since the strength of the 
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interaction goes to zero as t ~ 4-oo the potentials may go to zero as Ix[ ---* oc 
very slowly and still the trayectories are well approximated as t ~ ±co by 
the free motion.I now define an appropiate class of potentials. 

D E F I N I T I O N  3.1. I denote by ];othe class of potentials 

V ° = ~ Vf( t ,  ~k - ~j) (43) 
j , ~ k  

where Vj°~(t, y) i~ gato-~maH, 

{tVj°(t,y)(--Ay + I ) - l l l  <_ C 

for some constant C.Moreover, for all q E R there are positive constants C 
and vo such that 

115-~(t, y ) ( - A y  + I ) -~F( lYl  > v l t -  ql)[I < C ( l + l t l ) - " ( l + v l t - q [ )  -~ (44) 

for v > vo, with a > 0,1 > fl > 1/2,and (~ + fl > 1. 

Equation (44) is equivalent to the more intuitive decay condition 

][F(lyl > vJt - ql)Vj~(t, y ) ( - A y  + I) -1 l[ -< C (1 + It]) -~  (1 + v]t - qp)-P 

L E M M A  3 .2 .  Suppose that V C 12o with 0 < fl <_ 1 and that Assumption 
P is satisfied. Then for all fj,~, C C ~ ( R  ~) and q E R 

. [_"  5°k(t, dt 
OO 

a 8  v - - ~  ( x ) .  

xk - x j )  e -i(t-q)H° H fj 'k '(Pj 'k '  -- #j'k' vj ,k,) 
j'<k' 

r2) -~ I o ( v ~ ) ,  o < ~ < 1, 
(1 + ]'~k - xj = (45) 

( O((lnvik ) /  v jk) ,  fl=- 1 , 

Proof'Let us denote the integrand in the left hand side of (45) by I.Then 
I ~ I1 + I2 + / 3  where Ij ,  j = 1, 2, 3 are defined, respectively,as in (25),(26) 
and (27) with Vj~ replaced by Vj ° and U(t, q) replaced by 1.As in Lemma 2.6 
we prove that  the integrals of I1 andI2 give contributions to the right hand 
side of (45) that  are of order O(v-1).Furthermore, by (44) 

f_ dt I3 C ( l+l t l )-"(l+v~klt-ql)  -~ c 
oo oo Ilnvjkl/~jk, ~ =  1 

[] 
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It turns out that  only the slowly decreasing parts of the pair potentials 
need to vanish as time goes to plus and minus infinity.In fact I can even allow 
for pair potentials that  grow in time, provided that  they have fast enough 
decay as the interparticle distances go to infinity, in the sense that  they belong 
to NsR.So I assume that  

V = V s + V ° 

with V s E NsR and V ° E No.The time-dependent interacting Hamiltonian 

H(t )  = Ho + V s + V ° 

is self-adjoint in D ( H ( t ) )  = D(H0).Note that  Lemma 2.6 holds with V L =_ 0 
and u P ( t ,  q) replaced by e-fft-q)H°.Using also (45) we prove as in Section 2 
that  the canonical wave operators 

f2+(q) = s -  lim U(q , t )  e - i( t -q)H° (46) 
t--* 4-oo 

exist and that  

~-~<'-~>H°)~vll ~ c / v-~, o < fl < 1, II(U(t, q) ~2+(q) 
( IlnW~, ~ - - 1 ,  

where Ov is defined as in (11). The canonical scattering operator is 

S(q) = (12+(q))* Y2_(q) . 

(47) 

(48) 

T H E O R E M  3.3. Suppose that V s E NsR, V ° E No,that Assumpt ion  P is 
satisfied, that for some 1 < a < n and all g E C~°(R n) 

(o ) 
~ x  V°~ (t ,x) g(p)F( lx  I > < C(1 + r) -1-6 , (49) 

0 < 6 <_ 1,and that for  all 4~ E H2(R '~) the funct ions  t ~ V~2(t,x)O and 
t ---* to-Gd t o V012]t wt, x )~  are strongly continuous f rom R into L2(Rn). Then for  
all ~ v ,  grv as in (11), 

lin%--, oo iv ( [ S ( q ) , pa ]Ov , ~v  ) 

- (7:~(q, x + ~)~12, poel~)] + 

(50) 



44 

Proof: The proof of Theorem 2.3 applies in this case.I replace the Vj~(t, x) 
by Vj~(t, x) and uD(t ,  q) by e -i(t-q)H° and I eliminate the terms containing 

V]k(t , tpjk/21~jk).Remark that  it follows from (45) and (47) that  now 

{ O(v-(2f~-l)), 1/2 </3 < 1, 
R(v) = (51) 

O((lnvy/v), ~ = 1 ,  

0 0 X as v -~ ~ .F ina l ly  since (0-~-2V~2()) is a short-range potential the particular 

case of Lemma 2.6 with U(t, q) - I applies and we complete the proof as in 
Theorem 2.3 using Lebesque dominated convergence theorem. 

C O R O L L A R Y  3.4. Suppose that each one of the Vjk(t, xk --~:j), 1 _~ j < 
k < N,satisfies the assumptions of Theorem 3.2. Then (the high velocity limit 
of) S(q) for one q • R determines uniquely the potential V. 

Proof:This Corollary follows as in the proof of Corollary 2.4. Recall that  since 

S(q2) = ei(q'-q2)H°~(ql)e-i(ql-q2)H° 

if we know S(q) for one q C R we know it for all q • R. 

C O R O L L A R Y  3.5. Suppose that the hyphotesis of Theorem 3.3 are sa- 
tisfied and that for each q • R there are Pi > 0 and functions Qi(x), i = 1, 2, 
such that for every g • C ~ ( R  n) the operators Qi(x)g(p)  are bounded and 

]V(~(t + q,x)  - V~2(q, x)l _< [tlPlQl(x) , 

0 vo I( v°2)(t + q, x)  - (O~-z~ ~2)(q, x)] _< ]tf:Q2(x) 

with 

L ~o dr (1 r)l I < i - -  1,2 + r) p~ [ I Q , ( x ) g ( p ) r ( l x l  >_ 

and that fo r  some 0 < m <_ (2~  - 1), m < 6, wi~h ~ as in (44 )and  ~ as in 
(49), all g E C ~ ( R  '~) and all q E R ,  there are a vo > 0 and a function h 
with (1 + r)O3h(r) • LI((0, oo)) such that for all r • R 

l lV~2(r /v + q , x ) g ( p ) F ( I x l  ~ Irl)ll ~ h( I r l ) ,  v ~ vo . 

Then for all q~v, gtv as in (11) 
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= f2 dT[ (Vy=(q,"+ @ 
- - (  yls2(q' X "3k TV)q)12'Pa~12)] -~i/--~c~ dTQ( ~@a Yl°2)(q' x "Jr T'V)~12' ~12) 

+ + 
{ o(v-P~), P3 < 2 /3-  1, 

O(v-Oa), Pa = 2 /3 -  1 < 1 . 
(52) 

Proof." The proof follows as in Corollary 2.5 and using the bound given in (51) 
for the error term R(v).Note that  in (52) I do not allow for p3 = 2f~ - 1 = 1 
when ~ = 1 because I need that  p3 < 5 < 1. 
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Abs t rac t .  Propagation of a transversely polarized time-harmonic electromagnetic 
plane wave normally incident on a stratified nonreciprocal chirM (bi-isotropic) slab 
is considered. The medium is modeled by the constitutive relations in the frequency 
domain. The structure of the scattering matrix is analyzed. The inverse problem of 
reconstruction of material characteristics of a medium is studied. 

1 I n t r o d u c t i o n  

In this paper we deal with the scattering problem of a transient electromag- 
netic field normally incident upon a stratified nonreciprocal chiral slab. Our 
main goal is to s tudy the inverse scattering problem, that  is given the scatter- 
ing data  (obtained from the measurements of the incident and the reflected 
fields), to determine information about  material parameters of the media. 

According to Maxwell's theory of electromagnetism, one can describe ma- 
terial media by constitutive relations that  relate dielectric displacement D 
and magnetic induction B to electric and magnetic fields (E  and H,  respec- 
tively). 

A bi-isotropic (nonreciprocal chiral) medium is a linear medium tha t  has 
the following constitutive relations (Lindell, Viitanen 1992, Kong 1986): 

D = eE  + [ X -  in]H 

B = # H  + [X +i~]E 

(1) 
(2) 

where 6, #, X and n are the permittivity, permeability, nonreciprocity param- 
eter and chirality parameter,  respectively. 

Recent years have seen growing interest in wave propagation in media with 
complex structure (cf. Lakhtakia, V.K.Varadan, V.V.Varadan 1989, Jaggard, 
Engheta  1991) motivated, from one hand, by a variety of novel phenomena 
and characteristic features and their potential  usefulness in applied electrody- 
namics, and, from the other hand, by impressive advances in material science 
and technology that  make possible for such materials to be manufactured. 
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In the present paper, the material characteristics tha t  enter the constitu- 
tive relations (1), (2) are assumed to vary with one direction (depth),  which 
makes the problem one-dimensional. 

We analyze the structure of the scattering matr ix and t ransform Maxwell 
equations to a form suitable for the solution of the inverse problem. The  
uniqueness theorem on the recovering the material parameters  is proven and 
the reconstruction formulae are given. 

2 F i e l d  e q u a t i o n s  

Maxwell equations 

rot H = iwD, 

rot E = -iwB (3) 

together with the constitutive relations (1), (2) describe the propagation of 
the harmonic (with time dependence exp(iwt)) electromagnetic waves in a bi- 
isotropic nonconducting medium. It is assumed that  the medium parameters  
have the following structure: 

{ {61,P1,X1,~1} Z < 0 
= 0 < z < t ( 4 )  

{62, p2, x2, ~z} z > l 

i.e. the half-spaces z < 0 and z > l are homogeneous (with the related 
constant parameters marked by the indices 1 and 2), and the slab 0 < z < 1 
is stratified in z-direction. Assume also that  a transversely polarized plane 
wave is incident from the half-space z < 0 such that  E = (El,E2,0), H = 
(H1, H2, 0). Then one can rewrite Maxwell equations in the following form: 

w ere = E2 , H =  

0 
0 ~ ( E )  = i w W ( Z ) ( H  E )  

(HH12), 

(5) 

W(z)= ( - ( x  + i~)B -#B ) 
eB ( x - i s ) B  (z) (6) 

with B = (21  10) (of. He 1992). 

To simplify the following analysis, we assume that  the slab is matched 
to the half-spaces z < 0 and z > l, so tha t  the real-valued (for lossless 
media) functions s ( z ) , # ( z ) , x ( z ) ,  and ~(z) are continuous (and, moreover, 
differentiable) on the whole axis - o o  < z < +oo. For practical cases, X and 

are comparatively small, so that  )i2 + ~2 < 6p is also assumed. 
As it was shown in (He 1992) (see also Corones, Stewart 1993), to ana- 

lyze the wave propagation in complex media, and to obtain a physically clear 
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interpretation, it is convenient to reformulate the relevant differential system 
in such a way that  one can identify the down-going modes (propagating in 
the positive z-direction) and up-going modes (propagating in the negative 
z-direction). It can be done by diagonalizing the leading part (with respect 
to the spectral parameter a~) of the relevant system. The diagonalizing trans- 
formation (He 1992) is given by 

where 
1 - iql i + ql -iq2 q2 \ 

1 i - ql 1 + iql -q2 iq2 / (z) (8) 
T(z)  --- ~ 1 iql - i  ql -iq2 - - - q 2  ] 

- i  + ql 1 + iql q2 iq2 

Z # (9) q 2 -  

and the wave equation becomes 

OQ = i w T ( z ) W ( z ) T _ l ( z )  Q + T , ( z ) T _ l ( z )  Q (10) 
Oz 

= iwD(z)Q + V(z )Q  

where 

D(z)  =- diag{-Al(z),  -A2(z), Al(Z), A2(z)} 

A1 ~--- ~ - -  X 2 -[-/'~ 

A2= X / ~ - X  2 - ~  (11) 

o o 

V(z)  = T ' ( z ) T - l ( z )  = 0 i T - 7  (z) (12) 
0 - 7  -i~/ 
"~ 0 0 i7 

1 , X / ~ -  X 2 + ix (13) 
3' = K{ql q- iq~p}, p ---- z~ # 

To study (I0), it is convenient to apply the transformation that make the 
"potential" part V(z) of the equation off-diagonal. Let 

Y = Ed(z)Q = Ed(z )T(z )  - Tl (z)  (14) 

where 

{/0 } Ed(Z) = exp -- Vdiag(t)dt = diag{e(z),g(z),e(z),~(z)} (15) 
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{/i } e(z) = exp i "),(t)dt . 

From (10) and (14), we obtain the following equation 

OY 
Oz = iwD(z)Y + V 1 (z)Y 

where 

V l ( z )  = 

(16) 

(lr) 

(i ° ° i) z 0 - ~  (z) /~(z) = ~(z) exp 2i Re'y(t)dt 
-¢~ 0 
0 0 

(18) 
Notice that  Vl(Z) = 0 for z < 0 and z > I. 

3 Scattering matrix  

The Jost solutions Y+ (z, w) of (17) are defined by their behaviour for large 
Izl (that is, for our case, for z outside the interval (0, l)): 

= diag {e-i°°~'K°)Z,e-i~o)'~(°)Z,ei')'l(°)Z,e i~°~2(O)z} for z < 0 Y_(z,w) 

diag {e-iW~'(l)Z,e-i~aa(/)Z,ei~°M(l)Z,e iw'x=(')z} for z > 1. (19) 

First two columns of these solutions correspond to down-going waves, 
whereas last two columns correspond to up-going waves. The Jost solutions 
are related by the scattering 4 × 4 matrix S(w): 

Y+(z,w) = Y_(z,w)S(aJ) . (20) 

In what follows we will denote by A(i,j), i,j = 1, 2 the corresponding 2 x 2 
block elements of a 4 x 4 matrix A. From (20) we have 

Y+(1,i)) S-1 / Y-(l,2) 
Y+(2,1)(I 'I)(W)=(Y-(I 'I))  + Y -  (2,1) ~, Y- (2,2) ) '  R ( w ) ( 2 1 )  

where R(w) = S(2 ,1  ) (CO) " $511)(a2 ). The left-hand side of (21) corresponds to 
the transmitted down-going wave for z > l, whereas the first and the second 
terms in the right-hand side are the incident down-going wave and reflected 
up-going wave, respectively. Therefore, R(w), w > 0, is the physical reflection 
coefficient matrix for the slab which can be considered as input data  for 
the inverse problem, that  is the problem of reconstruction of the unknown 
material parameters using scattering information. 

Come back for the moment to the scattering relation (20) and study 
the structure of the scattering matrix S(w). Obviously, due to the specific 
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structure of the potential matrix Vl(z) in (17), the structure of S(w) is also 
special. Indeed, set 

= CYC, (22) 

where ( 00 i) 0 0 (23) 
C =  0 1 

1 0 

Then (17) and (20) yield 

0 7  
0~- = ia~b(z)!) + I)(z)!) (24) 

where 

? +  = ? _ .  # @ )  (25)  

D(z) =diag{-Al(Z),A2(Z)Al(Z),-A2(z)}, (26)  

~(~) = o (~) 0_% 
(27) 

~(~) = c s ( ~ ) c .  (2s) 
Therefore, the 4 x 4 scattering problem (24), (25) factors into two 2 x 2 

scattering problems for its (1,1) and (2,2) blocks: 

Y-t-= k~(1) 0 ) 
o (29) 

and 

e+(~) = ~(2 / • ~(~,,)(~), i = 1 ,2 ,  

where 2 x 2 matrices k~(, i) are the solutions of the following equations: 

(30) 

OgJ(1)-iw( - A l ( z ) O z  0 A2(z)0/k~O)+(0~(z) /3(z)/k~O)0 (31) 

The next step is to transform the problem (31), (30) to the scattering 
problem for Zakharov-Shabat equation (cf. Faddeev, Takhtajan 1987). 
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Let 

q~(_._l)(z,w)-~ ~P(1)(Z, W)exp ( l iw ~0Z(Al(t) - )~2(t))dt} 

¢~)(z,w) = ~PO)(z, w)exp { l iw  ~oZ(A1(t) - A2(t))dt} 

{l r } 
x e x p  - ~ i w  J o  [ ( ,Xl ( t )  - ,X2(t) )  - ( ,Xl ( I )  - ~ 2 ( l ) ) ] d t  

Then O(~) satisfy the differential equations 

(33) 

Introducing new variable 

where 1 

)~c(Z) : ~{,~I(Z) -[- ,~2(Z)} , (35) 
and the boundary conditions 

o(_l)(z, w) = diag{e -i~;~(°)z, e iw)~(O)z } for z < 0 

OO)(z, w) = diag{e -iW'xc(0z, e iwAc(l)z} for z > l . 

The scattering relation for (34) is 

~ )  = ~(J)" S(O 1) (W) (36) 

where 
/ 

1 (Al(1)-A2(1))]dtlt . (37) S01)(W) : S(l'l)(w)'exp{ -~iw fo [(Al(t)-A2(t))- ) 

~ Z 

~(z) = 2 Ac(T)d~- (38) 

and defining 

~_ (~) = ~)(z(~)) 

O+(~) = O~)(z(~)).diag {e-  fo ~(~c(')-~c(0)d', efo l(~c(')-~(0)d" } 

from (34) and (36) we obtain 

0 , - - 2  iw ~(~) 0 

@+ = @_. ~(~) (40) 

000) --iWAe(Z) (-01 0(~ ) 
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where 

u(~) = 2--~(z(~)) (41) 

S(~) : S~I)(od)-diag {e-iWfd(A~('r)-Ac(l))dT,e iwI~(A~('r)-Ac(l))d'r } (42) 

and 

~_(~,w) = diag{e-i~U2,ei~U2} for ~ < 0, 

~+(~,w) = d iag{e- i~ /2 ,e  i~U2} for ~ > ~(1). (43) 

The problem (39), (40), (43) is the well-known Zakharov-Shabat scatter- 
ing problem with self-adjoint potential matrix (cf. Faddeev, Takhtajan 1987). 
Hence, we can use known facts concerning the direct and the inverse problems 
for this problem: 

1) the scattering matrix ~9(w) has the following structure: 

= (44) < 
where [a(w)l 2 - Ib(w)l  2 = 1, a(w) is analytically extended into the hMf-plane 
Imw _> 0, and a(w) = 1 +o(1) ,  as Iwl --. c~, Imw ~ 0 ; 

2) the function u(~) (and, therefore, the solution ~±(~, w)) is determined 
uniquely by the scattering coefficient of this system r(w) = b(w)a -1 (w) given 
on the real line - o o  < w < + ~ .  

Coming back to the problem (24), (25), from (37), (42) and (44) we have 

(a(w) -b(w)).diag{eiWf:()~(-r)-,M(l))dr e-i~f:(),2(r)-,~2(l))d-r} S(I'I)(0d)= b(w) ~(w) 

(45) 
Now consider S(2,2)(~0)- Writing (31) and (32) in the form 

0~(i) - A (~) (z, w)~ (~), Oz (46) 

one can see that  -BA(2) ( z , - w ) B  coincides with AO)(z, w) under the chang- 
ing .~1 (Z) ~ ~2(Z) in the diagonal part of A (1) (z, w). This fact, together with 
(45), implies the following relation: 

-BS(2,2)(-w)B = (47) 

la(w) b(w) ~ .diag{eiW f:(,~2(.r)-;~2(1))dT e-iW fd(,M(T)-.M(l))d-r } 
= ] 

Denote by ek(W), k = 1, 2 the exponent factors: 

{J: } ek(w) = exp iw (Ak(T) -- Ak(l))d~- • (48) 
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Then (45), (47) and (28) lead to the following structure of the scattering 
matrix S(w): 

a(o3)el(CO) 0 0 b(od)e21(o3) ) 
0 a(-oJ) e2 (03) -b(-od)el 1 (o2) 0 (49) 
0 -b(-0))e2 (~d) a(-~d)ell (~2) 0 

b(o.;) e 1 (o3) 0 0 ~(o2) e 2 1(~3) 
s(~) = 

and, consequently, to the structure of the reflection matrix R(w): 

( 0 ---b(0-W))~ --: ( 0 r2(w)) (50) R(o2) : S(2,1)(02)' S~11)(02 ) : b(w) rl(w ) 0 

Here rl(w) coincides with the reflection coefficient r(w) for the Zakharov- 
Shabat system (39) 

rl(w) ---- r(w) = b(w)a-l(w), (51) 
and 

~2(~) = - v ( - ~ )  (52) 

4 Inverse problem 

It follows from (51) and (52) that  R(w) given for w _> 0 determines the 
reflection coefficient r(w) for the Zakharov-Shabat problem (39) on the whole 
line - c o  < w < ~ :  

r (~)  = J" r~(~)'  ~ -> 0 (53) 
[ - ~ ( - ~ ) ,  ~ < o . 

Knowing r(w) allows a means to reconstruct the potential function u(~) as 
well as the solutions ~±(~,w) of the Zakharov-Shabat system (39) (see Ap- 
pendix). 

Further, if ~+(~,w) are known, one can obtain the information about 
material parameters using, for example, the behaviour of ~+(~, w) as w --+ 0. 
Indeed, from (5) and (14) we can express Y(z, 0) in terms of the functions to 
be reconstructed: 

V ( z ,  o) = T I ( z ) T T I  (o) = 

(t(l iiS) o o t(i+~) ) 0 
1 t(1 ÷ i5) t(i - 5) 

t ( - i - 6 )  t ( 1 - i f i )  0 
\ t ( - i  + 6) 0 0 t(1 + i6) 

where 

(54) 

{i/0z t(z) : exp - 2  [q~(T) -- q~(T) (~-) + iqg(T)]dT]  (55) 
q2 J 

5(z) = ql(z) + iq2(z)p(O). (56) 
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From the other hand, (22), (29) and (33) imply 

v~,(z,O) = ~ _ ~ ( ¢ , o )  

Y14(z ,0 )=~-12(~ ,0) .  

Denote 

(57) 

where 
L z /o ~(z) = [Al(t) + ~2(t)]dt = 2 X,/e(t)~(t) - ~2(t)dt. (61) 

The statement of Theorem follows immediately from the considerations 
above and the equalities 

QI(~) = AR(~) + ql(0)z~i(~) 

Q2(¢) = q2(0) Ai(¢) . (62) 

Now we can make some conclusions concerning the reconstruction of the 
material parameters under normal incidence of exiting plane wave: 

a) chirality parameter  n = n(z) does not affect the reflection matrix; more- 

over, it enter the scattering matrix S(w) only in an averaged form f0~[n(t) - 
~(l)]dt. 

(~)1 = q l ( Z )  = QI ~:~(z) 

Q2(¢) e<(z) = q 2 ( z ) =  

x(z) 

v/~(z) , (z)  _ x2(z) 
, ( z )  

~/~(z) ,(z)  _ ~ 2 ( z )  
(60) 

A(~) = AR(~) + iAi(~) = ¢-11({,0) ,  

B(¢) = BR(~) + iBi(¢) = ¢-12(¢, 0). 

From (54) and (57), we obtain the linear system of equations for determining 
AR(~) -- ReS(z(~)) and AI(~) --= ImS(z(~)): 

Z~R(BI  -- A R )  Jr- A I ( B R  -- AI) = - A I  - B R  

z~R(BR -~- AI) + A I ( - B I  - AR) = --AR 4- BI. (58) 

The  determinant A of this system is non-zero for any ~ because A = IA[ 2 - 
[B[ 2 = det ~(~,0) ¢ 0, so that we can determine AR and AI: 

AR(~) = --2 AIBI  +AARBR (~) 

AI(~ ) = (AR + BI)  2 + ( A I + B R )  2 
(¢) (59) 

T h e o r e m  1 The reflection matrix R(w) given for w >_ O, added by the pa- 
rameters ql (O) and q2(0) determines uniquely two functions Qk(~), k = 1, 2 
of the variable ~ such that 
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b) the reflection matrix allows reconstruction of two (independent) functions 
of space variable. For example, if one of three functions v(z), #(z) and X(Z) 
is known then other two parameters are determined using the relations (60) 
and (61): 

1) if #(z) is known, then the dependence ~ = ~(z) is uniquely determined 
by the ordinary differential equation 

2#(z)dz = Q2(~)d~ (63) 

with the initial condition ~(0) = 0. The functions X(z) and e(z) are recon- 
structed by the formulae 

1 
X(Z) = ~Q1 (~(z))~'(z) (64) 

~(z) = ¼[~'(z)]~ + x~(z) 
, ( z )  ' (65) 

2) if X(z) is known, then the equation 

2X(z)dz = Q1 (~)d~ (66) 

determines the dependence ~ = ~(z); #(z) is given by 

1 
#(z) = ~Q2(~(z))~'(z) , (67) 

and v(z) is given by (65); 

3) if s(z) is known then the equation 

1 + Q2({)d{ = 2s(z)dz (68) 
Q2(~) 

gives ~ = ~(z); X(z) and p(z) are then reconstructed by (64) and (67). 

Appendix 

Here we briefly describe the scheme of solution of the inverse scattering prob- 
lem for Zakharov-Shabat system based on the Gel'fand-Levitan-Marchenko 
integral equation (for details see Faddeev, Takhtajan 1987). 

Given reflection coefficient r(w), define 2 x 2 matrix 

where 

o ~o(~))  ~(~)= ~12(~) 

F 1 r(w)e_i~/2d w . 
~212(~) - 4rr oo 
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Then the Gel'fand-Levitan-Marchenko integral equation (for the left end) is 
written in the form 

r_(~,n) + n(¢ + r/) + r_(4 ,s) f2(s+rl)ds=O,  O<_n<_4 (69) 

with respect to 2 × 2-matrix F_ (4, r/), for every fixed 4 E [0, l]. 
The solution F_ (g, z/) of (69) determines the potential function u(4) and 

the solution of (39) ~5_ (~, w) in the following way: 

~(¢) = 2r_12(~, 4) (70) 

~,_(~,w) = E(4,~) + F_(4,t)E(t,  co)dt (71) 

--" 0 
w h e r e E ( ~ , w ) =  ( e '0 ~/2 ei~/2 ) .  
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1 Introduction 

Imaging from scattered field data is traditionally referred to as diffraction 
tomography. These imaging methods, which are both numerically feasible (Fourier 
inversion-based) and yet mathematically rigorous, have generally required that the 
scattering objects be only weakly scattering, (e.g. based on the first-order Born or 
Rytov approximations). This severely limits their usefulness in practice. Many 
advances have been made based on iterative techniques, for example, to try to 
extend the class of objects that can be imaged. In this paper we report on a new 
approach that can be applied when these weakly scattering approximations are not 
valid. The methods remains a Fourier-based procedure, allowing well known 
spectral estimation and noise handling algorithms to be readily incorporated. We 
show how one can calculate a function using the available scattered field 
measurements from which an estimate of the permittivity distribution can be found 
by applying a nonlinear filtering technique. Most inversion techniques, including 
the one reported here, assume that scattered field data are available all around the 
object, for a set of incident field directions that circumscribe the object. Beyond 
this, we also consider the recovery of strongly scattering permittivity distributions 
from severely limited angular data, including backscattered data. This constraint 
occurs in many radar applications, as well as medical imaging, remote sensing and 
non-destructive testing. A Fourier-based method for image restoration can be 
directly built into the nonlinear filtering method and reconstructions using both 
simulated and real data have been calculated. 
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2 Imaging From Scattered Fields 

Methods for inverse scattering, directed toward imaging a permittivity profile (or in 
acoustics a velocity distribution) from scattered field data, usually require that the 
object be weakly scattering or have a permittivity which varies spatially only slowly 
on the scale of the illuminating wavelength. Under these assumptions, inversion 
methods collectively referred to as diffraction tomography techniques, can be 
formulated as straightforward Fourier inversion procedures [1]. The scattered field 
data under these conditions, based on adopting the first-order Born and the Rytov 
approximations, are mapped onto the Ewald sphere in k-space and inverse 
transformed. These methods for diffraction tomography are both numerically 
feasible (Fourier based) and mathematically rigorous, but require that the scattering 
object only interact weakly with the incident field. These approximations are rarely 
applicable in practice, thus limiting their usefulness. Although more robust than the 
Born approximation, the Rytov approximation requires a nonlinear transformation of 
the data to be made prior to using an identical inversion step as that performed when 
the Born approximation is valid. This nonlinear step requires that the logarithm of 
the scattered field measurements be taken. There are numerous problems in doing 
this when the magnitude of the scattered field is close to zero and when the phase of 
the scattered field has a range that exceeds 2~. Phase unwrapping is exceedingly 
difficult especially in two and higher dimensional problems, in which wavefront 
dislocations can naturally occur in large numbers, rendering the idea of a smoothly 
unwrapped phase meaningless. 

When the Born approximation is not valid, a Fourier based method can still be 
exploited and this is the key to the nonlinear filtering approach described here. The 
limitations of weak scattering and distorted wave inverse scattering methods are 
overcome by recognizing that the image recovered assuming the Born 
approximation to be valid, can be interpreted and filtered despite the approximation 
being invalid. One can invert or backpropagate the field for any given illumination 
direction and apply a filter to these field data in the cepstral domain; this is 
explained in more detail in a later section. This approach thus extracts information 
about the scattering function from sets of backpropagated fields, each one being 
interpreted as the product of the unknown permittivity distribution function with an 
unknown field distribution. 

There have been many other developments which extend the domain of validity of 
the Born and Rytov approximations [1-3]. These methods, sometimes iterative in 
nature, either assume sufficiently weak scattering that the Born series or a modified 
form of it converges or they assume that some a pr ior i  information about the 
scattering object is available. With prior knowledge of a background scattering 
medium, one can recover small fluctuations in permittivity about this background 
applying distorted-wave Born and Rytov methods. The distorted-wave approach has 
been widely used and reported and is also of use in modeling scattering in nonlinear 
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media [4,5], in which only small externally induced changes in the permittivity are 
expected. However, such methods do not provide a sufficiently general approach to 
solve an arbitrary inverse scattering problem, for which such prior knowledge is 
unknown. It is also important to point out that even when some prior knowledge 
about the scattering distribution is available, it can be a difficult task in its own right 
to compute the multiple scattering that occurs in a strongly scattering, but known, 
background structure. Also, in any of these imaging situations, additional 
difficulties arise from the limited number of field samples available and, typically, 
the limited number of illumination directions that can be employed. Indeed, in 
optical scattering, one may well need to estimate the object from scattered field 
intensity data by simultaneously estimating the missing phase information. These 
practical constraints necessitate that an image estimation or restoration technique be 
included in the inversion algorithm. This is readily done when the inverse scattering 
algorithm remains essentially Fourier-based in form. 

More general methods or "exact" inversion procedures have proved extremely 
difficult to implement, sometimes relying on embedding the object in a medium 
whose permittivity is close to that of the mean of the object's permittivity, or are 
limited to recovering shape or surface profile information [6-8]. The method we 
report is potentially "exact" based on a nonlinear or homomorphic filtering. The 
method extends the range of validity of the existing techniques to arbitrary 
scatterers, i.e. without the need to specify an upper bound on the permittivity of the 
object. We briefly outline the principle behind the approach and will then describe 
some of the problems associated with its use, along with solutions to these problems. 

3 Theoretical Model 

Consider a scattering object having a permittivity ~(r) which is embedded in a 
medium of permittivity ~0, where ~ = ~0[1 + V(r)]. We assume the object to be 

bounded by a compact support D, and assume that ~0 is the free-space permittivity. 
V(r) is referred to as the scattering or object function, i.e. it represents ~r - 1 and is 

the quantity we wish to estimate. If  the scattering object possesses cylindrical 
symmetry and the polarization of the incident time-harmonic electromagnetic wave 
is along the symmetric axis of the scattering object, the depolarization term in the 
vector wave equation can be neglected [1]. 

For the case of an incident plane wave ~Fo(r, k~'o ) = e i k i ' ° r  , then from the scalar 

Helmholtz equation we can express the total field ~F(r, kl- o ) in terms of the 

inhomogeneous Fredholm integral equation of first kind, namely, 
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Ug(r, kl'o ) = Wo(r, k~'o) - k2J dr'Go(r, '~ r ' )V(r ')W(r ' ,  kl'o) 

D 

= Wo(r, kl"o ) + W(r, k~" o ), (3.1) 

where Wo(r, k~" o ) is the scattered field resulting from the interaction of the incident 

wave Ws(r, k~'o ) with the scattering function V(r), Go(r,r') is the free-space Green's 

function, k is the wavenumber in free space, and ~'o denotes the direction of 
illumination. The integration in eq. (3.1) is over the support of V(r) defined by D. 
Using the far-field approximation for the outgoing spherical wave Go(r,r') , we 
obtain 

ikr 
Uds(r, k~'o) = k 2 ~ ~'J dr 'e- ikbr 'v(r ' )Ud(r  ", k~'o) (3.2) 

D 

When adopting the first Born approximation, the total field (or internal field) tP(r, 
k~'o ) is replaced with the known incident field To(r, k~'o ) in the integral above [9]. 
This approximation is valid when klsr - lla < 7r,/2, which, as we stated earlier, is not 

valid for most imaging problems of interest. The parameter a is the characteristic 
dimension of the object, and as the extent of the object increases or the magnitude of  
the permittivity fluctuations increases, the first Born approximation becomes 
increasingly poor. The Born approximation improves however by increasing the 
wavelength of the illumination, but this in turn degrades the resolution of the 
resulting image as will be evident later. 

Equation (3.2) may be written 

^ ~ , i k r  

W~(r, kiro) = k 2 ~ g r f ( l ~  kro) 

where f(k~", k~'o ) is the scattering amplitude which is defined as 

• - i k ~ - r "  t • ^ 
f (kf ,  k~,) = fD dr  e V( r  )q- '(r ,  k r  o) 

(3.3) 

(3.4) 

In the first Born approximation, the relationship between the (complex) scattering 
amplitude and the scattering function V(r) becomes a Fourier transformation, 
namely, 

fBA(kr'kr°) -- ~°dr'e-~'~eV(r')eik~°r' (3.5) 
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One can calculate and estimate for V(r) by performing an inverse Fourier 

transformation on the measured far field scattering amplitude data, fBA(k~', k~'o) . 

These data are related to the object distribution by Fourier transformation when the 
scattering amplitude data are located on the Ewald sphere in k-space, a locus of 
points tangent to the k-space origin and of radius k. Inverse Fourier transforming 
these data is formally equivalent to backpropagating the scattered field into the 
object domain from the measurement space. 

Since the scattered field data are mapped into k-space on circles of radius k , 
forward scattered data maps close to the k-space origin while backscattered data are 
located furthest from the origin giving high spatial frequency information about the 
object. As k increases, one can expect that higher spatial frequency information 
about the object can be recovered. That any inversion necessarily results from 
limited k-space coverage is to be expected and the image artifacts that might result 
will depend on how uniformly the data cover k-space and the signal to noise ratio. 

When the Born approximation is not valid, this Fourier relationship can still be 
exploited and this is the key to the nonlinear approach presented in this paper. One 
can readily see that inverting the scattering amplitude data determines not V(r) but 
rather the function VB(r, k~'o ) [10] which is given by 

VB (r,k? o) -- V(r)  Ud(r'k~°) (3.6) 
tyo (r, k~ o ) 

The symbol --- in the above equation recognizes the fact that the reconstruction is 
approximate since the Fourier transformation can only be taken for each ~'o = 

constant and limited k-space coverage will limit accuracy. 

The total field can be expressed by 

T(r,k~o) = To(r ,k~ ) -  k2Idr 'Go(r , r ' )V(r)  T(r' ,k~o) To(r,,kfo ) , (3.7) 
To (r', k~ o ) D 

for the case of a general scattering object, and one can write the Fourier relation 

T ( r ' ,  k6~) 
f(k~,k¢2) = Idr ' e -~k~)~ 'V(r ' )  

D Wo(r',kr~) (3.8) 

Consequently, a first Born inversion of the scattered field data for ~'o = constant, 

generates a filtered estimate of V(r)T(r ,  k~'o )/ To(r, k~'o ) from which one can 

attempt to estimate V(r) directly, since it is assumed that T ( r ,  k~" o ) -- To(r,  k~'o ). 
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Under most normal circumstances, the field ~ ( r ,  k~'o ), i.e. the field within the 

scattering volume D, cannot be assumed to be equal to the incident field. It is 
explicitly dependent on the direction of the incident plane wave which is known and 
so for each illumination direction used, one obtains an "image" of the function 
V(r)tIS(r, k~" o ). Given data from many illumination directions, a set of these 

"images" can be generated, one for each illumination direction, and in which V is 
common to each one of them but ~P is different. The recovery of an image of V can 
therefore be formulated as a problem in which and ensemble of noisy images of V 
require processing, the "noise" being multiplicative in nature. 

4 Homomorphic filtering 

Since for each direction of the illuminating radiation, the V(r )~(r ,  ki" o ) product 

will change, a set of these single-view backpropagated reconstructions can be 
generated. We regard the term ~P(r, k~" o ) as an unwanted factor or multiplicative 

noise term, which contains a certain range of spatial frequencies determined by the 
distribution of energy of the radiation field and its effective wavelength within the 
object. With respect to the spatial frequency content of the scattering object, this 
muhiplicative factor can be removed by homomorphic filtering techniques [11-13]. 
Direct Fourier (band-pass) filtering is not appropriate for multiplied signals of this 
kind since their spectra are convolved. 

Let us consider the nature of the filtering that might be required. If one considers a 
weakly scattering object the internal field approximately equals the incident field 
and will have a characteristic spatial frequency in the direction of propagation being 
a plane wave. As the degree of scattering increases, the internal field will become 
increasingly complicated in all directions, but will retain a characteristic correlation 
length or minimum scale, determined by the wavelength of the radiation in the 
medium V(r). As the permittivity increases, the effective wavelength of the 
radiation in the scatterer decreases. Thus there will be some characteristic set of 
spatial frequencies associated with Ud(r, k~- o ) inside the scatterer, information made 

available through backpropagation, which can be removed by filtering in the 
cepstral domain. Indeed, since the spatial frequency content of ~?(r, k~" o ) should be 

concentrated around some limited range of spatial frequencies, one can expect that 
the energy associated with these components would be located in an annular region 
in the spatial frequency domain, determined by the mean effective wavelength of 
the radiation in D, under ideal circumstances. 

The cepstral filtering inversion approach is as follows. When the Born 
approximation is violated, one recovers the function given by equation (3.6). For 
each different incident direction, the product V(r)Ud(r, ki'o ) will change and the set 
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of these single view reconstructions is generated and stored. Taking the logarithm 
of V(r)~(r ,  k~'o ) changes the multiplicative relationship between V and W into an 

additive one. This then permits linear filtering techniques to be applied to the 
spectrum of log[V(r)W(r, k~" o )] to remove, or at least minimize, the effect of h u. 

The spectrum of log[V(r)W(r, k~'o )] is referred to as the cepstrum of V(r)W(r, k~" o ) 

[14]. This operation will modify the spatial frequency content of V over the same 
spectral region as that of the removed W, but a second experiment at a different 
illumination wavelength should rectify this. In practice there are difficulties 
associated with taking the logarithm of the product V(r)~(r ,  k~" o ) as the phase of 

log[V(r)W(r, kl'o )] can be highly discontinuous if the phase delay incurred on 

propagation through the object exceeds 2n radians. The first Born approximation 
assumes that this phase delay is much less than ~. The phase function will therefore 
be wrapped into [-re,re] and abrupt discontinuities in this phase function generate 
unwanted harmonics in the cepstrum, making it difficult to correctly filter. A 
solution to this problem that avoids phase wrapping difficulties, is to make use of 
the differential cepstrum [15]. 

After summing the partial derivatives of log[V(r)W(r, k~'o )], we obtain an 

expression defined by the quantity S 

ro( ) o(vv)! (4.1) + 

where r = (x,y) in two dimensional problems. Here only derivatives of V(r)Ud(r, 
k~'o ) need be calculated (which can be easily obtained using a property of the 

Fourier transform) and the phase wrapping problem has been eliminated. A 
drawback in so doing is that the dc level of the function V(r)W(r, k~" o ) is also lost. 

This can be estimated from forward and backscattered data values however. One can 
define the differential cepstrum as the logarithmic derivative with respect to either x 
or y if one wishes to avoid only the phase ambiguity [11]; it is not necessary to form 
the derivative with respect to both spatial variables. 

There is an ill-conditioning problem that arises when V(r)W(r, k~" o ) takes on small 

values. This can be remedied by multiplying both the numerator and the 
denominator of S by [V(r)~(r,  kt'o )]* where * represents complex conjugate and 

then adding a small positive regularization parameter to IV(r)W(r, k~" o )12. The 

dominant contribution from W(r, k~'o ) is from the fundamental spatial frequency 

component present. For examples for which the spatial frequency content of V(r) is 
lower than that of q~(r, k~'o ), a simple low pass filter applied to the differential 

cepstrum should remove W(r, k~'o ) with only slight degradation to the recovered 
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image of V(r). However, this is clearly not optimal, albeit effective in 
experience. A low-pass filter also reduces spatial noise arising from 
interpolation and summing of a limited number of views. 

The sequence of steps required for this algorithm is shown in figure 1 

v v  0 {.} 

o u r  

the 

t I  xp'"l 
Figure 1 Differential cepstral filtering 

In figure 2, we illustrate the reconstruction of a simple cylinder with the 
permittivities shown on the left, namely an e of 4.0 in the central region and 2.0 in 
the outer annulus. The free space wavelength used was 3.0cm and the outer radius 
of the cylinder was 9.9cm. The exact expression for the field scattered from these 
concentric cylinders was calculated and used as data to check the inversion step. 
Following low-pass filtering of the differential cepstrum of the backpropagated field 
for one illumination direction. As can be seen the basic features of the original 
object are evident and the regions have an amplitude proportional to the original 
permittivity differences (not shown). 

~R --" 1.0 

@ 
Boxed Area = 43 x 43 cm 2 

Figure 2 Differential cepstral filtering 
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5 L i m i t e d  da ta  po in t s  

Many important imaging techniques are based on measuring backscattered radiation. 
Several inverse synthetic aperture (ISAR) systems, for example, have been 
developed with the objective of extracting a maximum amount of information about 
complex targets, just from backscattered signals. Common to these methods is a 
stationary radar and a target whose radar aspect is varied in some specified way. In 
this case, an arbitrary target axis intersects the radar beam axis making an angle 0 
with it. As the target axis precesses around the beam axis its motion is similar to a 
precessing top. Varying 0 between 0 and values of the order of 10 degrees yields k- 
space data on a spherical cap with nearly constant polarization illumination and 
nearly aspect independent return levels from specular scatterers. Examples of the 
extent of data coverage in k-space is shown in figure 3 below, for both the two and 
three dimensional cases. 

kz 0=5 ° 
~L~ 0=10 o 

ky 

kx 

Top 
Side Front 

Figure 3 Limited k-space data and corresponding 2-d projection coverage. 

The reconstruction of an image from such a limited k-space coverage results in 
considerable distortion of the image. The available data comprise a truncated 
conical region in k-space of angular extent 20 with co- and cross polarization 
information over the full angular range of 2ft. 

When using these inversion methods, there is frequently a prior estimate of the 
scattering object. The following spectral estimation procedure exploits this prior 
knowledge when only limited k-space data are acquired. It takes a prior estimate, 
P(r), of  the broad features of V(r), e.g., Vl(r), and a set of equations of the form, 
expressed in 1D for convenience, is solved [19-21]: 

N 

f ( m ) =  ~ a n P ( m - n )  ; m = - N  . . . . .  N 
n=-N ( 5 . 1 )  
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The values p(m) (m = -N ..... N) are taken from the discretized Fourier transform of 
P(r) and the scattering amplitude data are represented by f(m) (m = -N . . . . .  N). 
Inversion of a matrix with elements derived from p(m) allows one to solve for the 
coefficients a° (n=-N ..... N). In principle, the data, f(m), need not be uniformly 
sampled, which means that this approach can be used to interpolate and extrapolate 
both nonuniformly sampled and incomplete data sets. Obtaining the coefficients, a 
allows one to define an estimator that minimizes the approximation error given by: 

I 1 n_~_a 2 dr ~-7--7, V ( r ) -  P ( r )  n einr 
-~ v t r )  l (5.2) 

The resulting estimator of V(r) is termed the PDFT estimator because of its form, 
namely, PDFT(r) = P(r)A(r), where A(r) is the trigonometric polynomial with 
coefficients, a., i.e. we have 

N 

PDFT(r) = P(r) ~ a , , e  ~ 
n:-N (5.3) 

If  no prior knowledge is available, P(r) is a constant and the estimator reduces to the 
DFT of the available Fourier data. In other words, if the prior estimate, P(r), is a 
constant for Irl 2 rt, then a°= fin) and the PDFT reduces to the discrete Fourier 
transform (DFI') estimator, that is usually calculated. This PDFT estimator is both 
continuous and data consistent, and the algorithm is easily extended to the two- or 
higher-dimensional case. 

This estimation technique is easily regularized in the presence of noise. One can 
either modify the prior estimate, P(r), to take a small value outside the anticipated 
support of the scatterer, V(r), or one can add a small positive constant to the 
diagonal of the matrix, p. These can be shown to be equivalent to a Miller-Tikhonov 
regularization process. This is a computationally intensive algorithm because it 
requires the solution of a large set of linear equations. For 2M by 2M uniformly 
sampled scattered field data, one must invert a 2M by 2M matrix if the prior 
estimate, P(r), can be expressed as a separable function, otherwise a (2M) 2 by (2M) 2 
matrix must be inverted. 

6 Conclusions 

We have described a method of processing backpropagated scattered field data 
collected from strongly scattering objects. This differential cepstral filtering 
approach allows direct inversion of scattered field data and incorporates a nonlinear 
step, required to deal directly with the nonlinear nature of the integral equation of 
scattering. It does not rely on linearizing methods based on the Born, Rytov, or 
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their associated distorted-wave approximations. This filtering step has not yet been 
optimized but in all cases studied to date, the spatial frequency content of W has 
been higher than that of the scattering object, allowing a simple low-pass filter to be 
successfully employed [22]. The filter will necessarily result in some loss of 
information about the target at these frequencies. On-going work involves 
processing more data, especially that obtained from experiments using non- 
cylindrically symmetric targets. 

It is desirable to incorporate spectral, or in this case cepstral, extrapolation and 
estimation techniques into the inversion algorithm. This allows one to recover an 
estimate of the object even in the presence of noise and a limited data set in k-space. 
The estimation procedure requires some a priori knowledge of the object, such as its 
support. In the case of only having limited intensity data available to process, the 
PDFT can still be useful, [19,23]. 

An important issue that remains to be studied regarding this method, is how one 
should effectively use multiple view (i.e. multiple illumination direction) data over 
various regions in k-space and how best to filter these data in the differential 
cepstral domain. There also remains more research to be done in determining the 
optimal sampling rate necessary to adequately represent the functions involved, 
since taking the logarithm of a function, either implicitly or explicitly, renders it 
non-bandlimited. 
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Abs t r ac t .  Inverse problems as direct solutions of electron scattering equations can be 
deduced using either an invertible linearized eigenvalue system or a discretized form 
of the diffraction equations. The analysis is based on the knowledge of the complex 
electron wave at the exit plane of an object reconstructed for single reflections by 
electron holography or other wave reconstruction techniques. In principle, this enables 
the direct retrieval of the local thickness and orientation of a sample as well as the 
refinement of potential coefficients or the determination of the atomic displa.cements, 
caused by a crystal lattice defect, relative to the atom positions of the perfect lat- 
tice. Considering the sample orientation as perturbation the solution is given by a 
generMized and regularized Moore-Penrose inverse. Extracting solely the atomic dis- 
placements the latter are given by the zeros of a function with an incompletely known 
Fourier spectrum. The numerical algorithms resulting from the fundamental relations 
imply ill-posed inverse problems. 

1 I n t r o d u c t i o n  

Inverse problems are difficult, always fascinating, and in most  of the eases ill 
or improperly posed (Tichinov and Arsenin (1977), Lavrentiev (1967)). Ill or 
improperly posed means that  one or all requirements are violated that  usually 
characterize physics, i.e. existence, uniqueness and stabili ty of  a solution. As 
often occurring in many physical investigations, in the mathemat ica l  sense, the 
direct solution of the diffraction equations implies an inverse problem. Al though 
the inverse problems violate especially the existence of unique and continuous 
solutions to arbi t rary data  they are of great practical  importance,  if the trial- 
and-error solution demands a large variety of possible solutions and models to be 
tested, most ly providing a better insight into the basic relations of the physical 
phenomena.  

For instance, the imaging of crystal defects by high-resolution transmission 
electron microscopy or with the help of electron diffraction contrast  tcchnique 
is well known and routinely used. Though  the theoretical image calculations 
always tend to establish s tandard rules of interpretat ion,  a direct and phe- 
nomenological analysis of electron microgra.phs is most ly  not  possible, thus re- 
quiring the application of image simulation and match ing  techniques. Images are 
modelled by calculating both the interaction process of  the electron beam with 
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the almost periodic potential of the matter, and the subsequent Fourier imaging 
process including the microscope aberrations. The images calculated are fitted 
to the experiment by varying the defect model and the free parameters. This 
trial-and-error image matching technique is the indirect solution to the direct 
scattering problem applied to analyse the defect nature under investigation. 

Electron holography or other reconstruction techniques (Lichte (1986), Lichte 
(1992), Coene et al. (1992), van Dyck et a1.(1993)) permit the determination of 
the scattered wave function at the exit surface of the crystal directly out of 
the hologram or from defocus series up to the microscope information limit 
owing to the noise in the phase distortion. Espeeia.lly the sidebands of a Fourier- 
transformed hologram represent the Fourier spectrum of the complete complex 
image wave and its conjugate, respectively, from which the object wave can 
be reconstructed. Thus, both the reconstructed amplitudes and phases can be 
compared to triM-and-error calculations (Lichte (1991), Lichte et al. (1992)). 

In previous papers (Scheerschmidt and Hillebrand (1991), Scheersclmfidt 
and Knoll (1994), Scheerschmidt and Knoll (1995a), Scheerschmidt and Knoll 
(1995b), Scheerschmidt (1997)) it was demonstrated that the local thickness and 
orientation can be calculated directly from the wave function reconstructed at 
the exit surface of the object instead of using trial-and-error simulation techni- 
ques. In principle, the analysis holds good also for the retrieval of the object po- 
tential, or if solely the positions of the atomic scattering centres are evaluated. 
The inverse problems, however, generally dealing with insufficiently measured 
data always require physically related information a priori. It was shown that 
the knowledge of both the amplitudes and phases of a sufficiently large number 
of plaaae waves scattered by the object as well as the partial knowledge of the po- 
tential of the perfect crystal structure imply the possibility of directly retrieving 
object information, instead of using trial-and-error simulation techniques. Two 
approximations are discussed to solve the resulting inverse scattering problem 
without reconstructing the whole crystal potential: 

First, the special problem of retrieving the local sample orientation is solved 
on the basis of the perturbation approximation for perfect crystals, and by ap- 
plying regularized and generalized matrices to invert the resulting tinearized 
problem. The corresponding iteration procedure enables the direct analysis of 
the moduli and phases if a sufficient number of plane wave amplitudes can be 
separated yielding local thickness and bending of the object for each image pixel 
(Scheerschmidt and Knoll (1995b), Scheerschmidt (1997)). 

Second, based on the knowledge of the reconstructed complex electron wave 
and using a discretized form of the diffraction equations, an alternative method is 
developed (Scheerschmidt and Knoll (1994), Scheerschmidt and Knoll (1995a)), 
yielding an algebraic equation system for the complex amplitudes and the elastic 
displacements. In principle, this system enables the direct retrieval of the atomic 
displacements, caused by a crystal lattice defect, relative to the atom positions 
of the perfect lattice. The equations are invertible provided the completeness of 
the plane waves is valid (continuity of the electron current). A special inverse 
problem of electron scattering is deduced considering solely those atomic dis- 
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placements given by the zeros of a function with an incompletely known Fourier 
spectrum from the scattered electron wave of which the displacement field of a 
crystal lattice defect can, in principle, be retrieved. 

The present paper  outlines the fundamental relations for both special inverse 
problems describing some first numerical experiences related to the solution of 
the direct retrieval of local thickness and orientation. Some numerical aspects 
are considered as, e.g., the stability of unique inverse solutions in terms of noise, 
and the regularization of the problem. 

2 Physical basis: Dynamical diffraction and holographic 
wave reconstruction 

The HREM image contrast is mainly determined by two processes: First, by the 
electron diffraction owing to the interaction process of the electron beam with 
the almost periodic potential of the mat ter  and, second, by the interference of 
the plane waves leaving the specimen and being t ransmit ted by the microscope. 
Assuming that  the object wave is reconstructed free of aberrations or under 
diffraction contrast conditions the influence of the microscope imaging process 
itself can be neglected. Thus the image contrast is solely determined by the 
interaction of the electrons with the object potential. 

The interaction of electrons with a crystalline object is described on the ba- 
sis of a periodic potential with the electron structure factors as the expansion 
coefficients and the Bloch-wave method for solving the high-energy transmision 
electron diffraction. Different formulations can be given, using Bloch wave or 
plane wave representations of the scattered waves, applying direct or reciprocal 
space expansion, and direct integration or slice techniques, which~ in principle, 
are equivalent descriptions (van Dyck (1985), Spence and Zuo (1992), van Dyck 
(1989)). The object wave in terms of modified plane waves with complex ampli- 
tudes Cg yields 

o(R) = A_~X--" ¢g e2'ri((k+g)R+sg t) (1) 

g 

with reflections g, excitations sg,  wave vector k, and thickness t of a parallel- 
sided object, R = (x, y). The amplitudes Cg are constant with respect to z in the 
vacuum outside the object, which means that  the plane waves are the stat ionary 
solutions of the wave equation. Within the crystal, however, the amplitudes of 
the modified plane waves Cg are z-dependent according to the Ewald pendulum 
solution as described by the Bloch waves, which are the stat ionary solutioll 
within the periodic potential. 

The basic equations of the Bloch wave presentation in forward scattering 
approximation are given by the eigenvalue system 

E A g h C h  - 7Cg = 0, with 2k~Ag h = (2K.g  - g2)~g h - V g _  h, (2) 
h 
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yielding the amplitudes Cg (t) of the 1 th partial wave and its "anpassung" 
~¢l) to the dispersion of the lattice as a function of the lattice potential (Fourier 
coefficient Vg) as well as the relative orientation of the object with respect to 
the electron beam incidence K. With these eigenvalues asad vectors, for a plane 
parallel perfect crystal of thickness t the complex amplitudes Cg of eq. (1) are 
directly given in matrix form by 

@ = C X C - I O  (3) 

where • = leg] and 0 are the vectors of the amplitudes of the exit and the 
incident waves, respectively, and X represents the diagonilized scattering matrix 
~2~iAt. 

Using furthermore the deformable ion approximation a crystM lattice defect 
can be included by its elastic displacement field v as a phase shift of the Fourier 
spectrum of the crystal potential. The evaluation of the quantum-theoretical 
scattering problem using the high-energy forward scattering approximation (see, 
e.g., (Anstis (1989), Howie and Basinski (1968)) for the derivation and the ex- 
plicit form of the equations) yields a parabolic differential equation system for 
vcctor ~ of the complex amplitudes of the elastically scattered electron waves : 

O~/Oz = ( ~  + V[e igv])~  (4) 

with A = { i k z V  ~- - 2(k + g )V} /2k ' z  + 2 r ( s  h - Sg)z , V = (O/Ox, O/Oy, O), 
k'= = ks + g~ + sg and the potential V=V'+iV" including the lattice potential V' 
and the absorption V" (one electron-optical potential approximation of inelastic 
scattering) as well as the diagonal matrix of the defect phase shifts. 

In addition, boundary and initial conditions have to be applied: The lin- 
earized high-energy approximation directly fits Cg(R, t) at the crystal exit sur- 
face to Cg(R) outside, demanding [¢g(R, 0)[ = 6go at the entrance surface, 
whereas the continuity of the derivatives has to be omitted in the linearized 
case. It enables one, however, to estimate the unknown displacements at the 
exit foil surface by using eq. (4) without potential outside and inverting eq. (4) 
directly at the exit surface: 

{v[~'gv]~ = 2 ~ } = = ,  (5) 

Instead of boundary conditions one can assume a periodic continuation to 
describe large extended crystal slabs, i.e. Cg(x,y, z) -- Cg(x + X, y,z)  and 
Cg(X, Y, z) = Cg(x, y + Y, z), with slab extensions X,Y approaching infinity. 

Holography with electrons offers one of the possibilities of increasing the reso- 
lution by avoiding microscope aberrations. It also enables the complete complex 
object wave to be restored. Image plane off-axis holograms are recorded in a. 
microscope which is equipped with a MSllenstedt-type electron biprism inserted 
between the back focal plane and the intermediate image plane of the objective 
lens (Lichte (1986), Lichte (1991), Lichte (1992), Lichte et al. (1992)). The ob- 
ject is arranged so that a reference wave outside of it is transferred through 
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the microscope, and owing to a positive voltage of the biprism both waves mu- 
tually overlap in the image plane creating additional interference fringes. The 
intensity of the latter is modulated by the modulus of the object wave, whereas 
the fringe position is varied by the phase of the object wave. Thus the recorded 
interference pattern is an electron hologram from which both the moduhts and 
the phase of the object wave can be reconstructed by optical diffraction or nu- 
merical reconstruction. The reconstruction starts with a Fourier transform of the 
hologram. Besides two sidebands in the central region of the Fourier spectrum 
the zero peak and autocorrelation occur, which is equivalent to a conventional 
diffractogram. The sidebands represent the Fourier spectrum of the complete 
complex image wave and its conjugate, respectively, from which the object wave 
o(x,y) can thus be reconstructed by separating, centring, and applying the in- 
verse Fourier transform including a reciprocal Scherzer filter with damping and 
microscope aberrations (Lichte (1991), Orchowski et al. (1995)). 

In the following it is important that, besides the whole sideband, each single 
reflection of sufficient intensity can be reconstructed separately (Scheerschmidt 
(1997)). This provides the possibility of noise reduction if suitable windows and 
filtering are applied and if the pixels are precisely centred to avoid additional 
phase shifts. The environment of the reflections included in the filtering process 
has to be chosen such that the information of local distortions folded with the 
reflections will be transferred to the reconstructed partial waves. The reconstruc- 
tion of the single reflections causes modulus and phase to be distributed in the 
partial waves, which is the presupposition of the inverse algorithm discussed in 
the following. 

Figure 1 demonstrates the wave and the single-reflex reconstruction using a 
theoretical hologram simulated for a 2 = 1 3  (100) tilt grain boundary in gold, 
which is relaxed by molecular dynamics. Fig. l(a) shows the simulated hologram, 
and Fig.l(c), an enlarged region with the hologram fringes extending from the 
central part of the boundary, with the atomic columns around the interface. The 
Fourier spectrum of the hologram is given in Fig.t(b), and the sideband selec*ed 
for reconstruction in Fig.l(d), the pairs of the reflections are indicated with 
the corresponding reciprocal lattice vectors. Fig. l(e) presents the reconstructed 
real space intensities of the single reflections in amplitude (AMP) and phases 
(PHA), separately for the two grains denoted 1 and 2, respectively: in the tipper 
row the left grain is excited, in the lower row, the right one. The reconstructed 
amplitudes of the reflections can directly be interpreted as bright and dark-field 
images of the grain boundary. 

Fig. 2 shows one sideband of the Fourier spectrum of the experimental holo- 
gram ((a), selection on the left hand side) of a ~=1 3  (100) tilt grain boundary 
in gold (8 = 22.6 °, see (Orchowski et al. (1995), Orchowski and Lichte (1996)) 
and preliminary common work (Orchowski et al. (1993))) and the reconstruc- 
tion (b,c) of the single reflections as indicated in the spectrum of the hologram 
filtered through a Gaussian mask. The upper rows (b) show modulus (AMP) 
and phases (PHA) of the particular reflections chosen of types 000, {002}, mid 
{220}, thus presenting the reconstruction of the corresponding amplitudes ¢~g 
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Fig. 1. Reconstruction of single reflections of a simulated MD-relaxed L'=13 (100) Au 
grain boundary: (a) Theoretical hologram with the grain boundary vertically arranged 
in the centre, (b) Fourier spectrum of the hologram, (e) Enlarged selection of the 
hologram, (d) Sideband applied for reconstruction with indices of the reflections, (e) 
Reconstructed moduli (AMP) and phases (PHA) of the reflections of grains 1 and 2, 
resp. 

out of the hologram. For comparison in the lower rows (c) the corresponding real 
(REA) and imaginary part (IMA) of the reconstructed ¢~g are presented yielding 
the same information, however, without the phase wrapping problem according 
to the multi-valued phases. The reconstruction of the higher-order reflections is 
impossible here because of the lower intensity of the latter and the mutual over- 
lap of the autocorrelation and the side-band. The single reflections are denoted 
by I and 2 according to grain 1 and 2, respectively. The shift of the fringes at 
the grain boundary directly indicates the phase shift owing to the crystal defect. 
The modulation by lower frequencies is due to the local bending of the sample 
or to thickness oscillations. 
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Fig. 2. Reconstruction of single reflections of a Z'=13 (100) Au grain boundary, sep- 
arately for both grains denoted by 1 and 2, respectively: (a) Fourier spectrum of tile 
hologram (0.05 nm fringes, A. Orchowski, University T~bingen (Orchowski and Lichte 
(1996), Orchowski et al. (1993))), with indicees of the reflections and asymmetric in- 
tensities in the sideband showing the mistilted orientation, (b) reconstructed moduli 
(AMP) and phases (PHA), (c) reconstructed real (REA) and imaginary (IMA) part of 
the partial waves. 

3 Inversion by l inearization and discret izat ion 

Eq. (2) can be linearized applying perturbation methods. Assuming that  the 
eigenvalues 3' are non-degenerated, and by analog), with eq. (3), the perturbat ion 
solution may read 

= F ~ F - 1 0 ,  

where the matrices are given by 

(6) 

F = C(1 + A), .~ = {e2~ixt}, and ), = 7 + A{3ij} + A-I{1/(~,i  -- 7j)}A. (7) 

As diagonal elements the perturbation matrix Ag  h = (AK.g )  + i A V g  h con- 
tains the deviation of the orientation A K  from that  of the original eigenvalue 
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Exact (a) 

Am~-O t/~. ~.~// Pha-O 

" ~  /// 
Amp-g 

(b) Perturbation 
Fig. 3. Comparison of the exact two-beam solution (a) of moduli (AMP) and phases 
(PHA) of transmitted (0) and diffracted beam (g) with the corresponding perturbation 
solution (b). Differences occur for orientations with Is~l > 1, e.g., where the perturba- 
tion is no longer valid (s=Bragg deviation, t=crystal thickness, ~--extinction distance). 

system K. The non-diagonal elements describe a perturbat ion of the potential 
as, e.g., according to optical absorption. Fig. 3 demonstrates the validity of the 
perturbation solution comparing eq. (6) with the exact solution (3) of the two- 
beam case. As for moduli and phases, for both reflections there are renaarkable 
deviations for ls(I > 1 almost independent of thickness t around the exact ori- 
entation of the pole Is~l = 0 of the exact two-beam excitation. 

Starting from approximate values of thickness to and beam orientation (k~o, k~, ) 
gained from a priori knowledge or by analysing, e.g., the asymmetry  of the single 
reflections reconstructed from the holographically retrieved wave function, the 
perturbation solution is valid within certain intervals around to and (k~o, kvo ). 
Eq.(6) can be expanded in a Taylor series yielding 

¢(t,k~,k,)=¢(to,k~o,kyo)+(t-to)O¢/Ot +(kx-~.~o,ky-~,~.)Vk¢. (S) 

The derivatives can directly be gained from eqs. (8) using equivalent abbre- 
viations: 

O¢/Ot ..w_ 1"0,~/0~1"~--10 and V k ¢  = (Vk.F'~, -- F - 1 V k F ~ ,  + F V k ~ , ) F - 1 0  (9) 

The linearized eq.(8) together with the analytical expressions (9) enable the 
inverse solution: 

(t, kx, k.~) = M i n  v [¢exp _ cper t ] ,  (10) 

where the matrix is given, e.g., by the Penrose-Moore inverse M i n  v = 

( M T M )  -1  M T,  which is represented analytically using the matrix of the coef- 
ficients M = (0¢ /0 t ,  V k ~  ) of eq.(9). ¢¢xP are the measured da ta  and Cp~,-t the 
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solution of the perturbation equation (6) at to, Ko. The series expansion (8) as 
well as the resulting formalism (9) can be extended to include also the derivatives 
of deviations from potential coefficients, which are omitted here for the sake of 
simplicity. That  means, additional unknown object parameters caia be included 
in the retrieval procedure as far as the problem remains overdetermined with 
respect to the unknowns. 

Algorithm (10) is the solution to the inverse problem concerning the local 
thickness and orientation analysis, the regularized inverse iteration can directly 
be applied to each pixel in the real space representation of the single reflections 
reconstructed from the hologram. On the suitable assumption of the basic eigen- 
value system (2) and starting with suitable local thickness to as well as incident 
beam orientation (k~o, k~o) the values of thickness t and orientation (kx, k v) are 
probably enhanced if eq. (10) is applied to the amplitudes and phases measured 
of each image pixel and each reflection g. 

Figures 4 and 5 demonstrate the applicability using the single reflection wave 
reconstruction of Figs. I and 2, respectively. In both cases, the same nine-beam 
eigenvalue system was used to model the diffraction behaviour. Here, no further 
assumption was made as to the initial thickness to. The best fit was revealed by 
searching the absolute minimum of the defect of the vector norm at an extended 
thickness intervall. Fig. 4 results in a flat tickness t(i,j) as assumed for the 
simulation of the corresponding hologram. The retrieved incident wave vector 
K(i,j) shows oscillations with the pixel numbers, caused by the bending of the 
lattice planes, which results from the relaxation of the grain boundary because 
of the additional twist component assumed. Different but small regularization 
parameters 7 (here 7=.0001 was assumed) do not smooth the noise if solely the 
pixel intensity (see chapter 4) is regularized. In the case of retrieving from the 
experimental hologram, different initial orientations of K0=(.51,.71,.0 ) in Fig. 
5a, and of K0=(-.28,1.21, .0) in Fig. 5b, yield very noisy results in thickness t 
and orientation (k~, k~) for the 64x64 pixels retrieved. Nevertheless, both cases 
show almost the same values t~  .77~ and t=0 for the plateau of the object and 
the hole, respectively. 

The differential equations (4) allow the diffusion-like interpretation and can 
be discretized using standard difference algorithms (Scheerschmidt and Knoll 
(1994), Scheerschmidt and Knoll (1995a)). An algebraic equation system results, 
which formally reads 

~( i , j , k -1 )=Fl { ~ ( i , j , k ) ,~ ( i - 4 -1 , j , k ) ,~ ( i , j± l , k ) , v ( i , j , k ) }  (11) 

for the complex amplitudes • and the elastic displacements v at the (xyz)- 
grid points (i,j,k), ( i i l , j ,k ) ,  (i ,j+l,k) and ( i , j ,k±l)  representing the object. Pe- 
riodic boundary conditions are assumed in x and y direction, whereas at the exit 
surface, a further equation is given applying the forward integration of eq. ( 11 ) 
outside the crystal and discretizing the symbolic equation (5). 

Within the crystal the difference equations (11) are equivalent for backward 
(k-l) and forward (k+l )  integration with respect to the beam propagation, thus 
being insufficient for determining both the wave amplitudes O(i,j,k) and the 
elastic displacement field v(i,j,k) at the grid points (i,j,k) considered. This be- 
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Fig. 4. Iter,atively determined local sample thickness t and beam orientation ( I(., I(y) 
retrieved from the reconstructed reflections of the theoretical hologram }n Fig. I for 
arbitrary start values of thickness and given start values of orientation without regu- 
larlzation. 

~ tp= / . ~  
.7 / / / ~  

t(i,j) ~ Kx(i,j) -"~' Ky(ij) 

Fig. 5. Non-stabilized iteratively determined local sample thickness t and beam orien- 
tation (K~, K~) retrieved from the reconstructed reflections of the experimental holo- 
gram in Fig. 2 for arbitrary start values of thickness t (resulting in stable solutions 
th=0 in the hole, and tp ~ .77( on the plateau} and given start values of orientation 
Ko=(.51,.71,0) and Ko=(-.28,1.21,0) for the upper and lower rows, respectively. 

comes also obvious by simply numbering the unknowns and the equations at each 
node: for N beams, there are N unknown amplitudes and 3 unknown displace- 
ments, and N relations according to eqs. (11), using either (k- 1 ) or (k+ 1). One of 
the difference equations, however, can be replaced as follows: While the opticM 
potential in the reciprocal space representation is generally non-hermitian, the 
hermiticity of the potential V' and of the "absorption" V" yields the equution 
of continuity for the whole current / = ~ ¢ g e g * .  The continuity equation may 
then read 

OI/Oz = ~V2~ * - 4~*V2~ + 2(k + g ) V I  - 2~V"[eigV]~ * (12) 

The equation of continuity can be discretized by analogy with the discretiza- 
tion of the differential equations above. The differential operator, however, yields 
mixed terms with respect to different nodes (i,j,k) and (i=kl,j+l,k): 
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F2 {v(i,j),4~(i,j, k + 1) ,¢( i , j ,  k), 4~(i + 1,j ,  k), ~( i , j  + 1, k) } = 0  (13) 

By analogy with the Gelfand-Levitan-algorithm (see, e.g., ( Zakhariev and 
Suzko (1990))) an additional equation results by inverting the equation of con- 
tinuity, which is a kind of completeness relation, yielding 

E Qg e2"gv = 0 (14) 
g 

for eq. (13) as well as for the additional boundary condition previously dis- 
cussed. Coefficients Qg are explicitely given in (Scheerschmidt and Knoll (1994)). 
Thus, in principle, the retrieval of the displacements v is given by the remai- 
ning inverse problem (14), implying to find the root of a function given by an 
incomplete Fourier transform. 

The inverse problem (14) is ill-posed for two reasons: Only one equation has 
to be solved for the vectorial root v(i,j,k) at node (i,j,k), thus coplanar vectors 
g leave one component unconsidered. The spectrum Qg(i,j,k) is incomplete and 
noisy. This results in unstable numerical solutions using standard algorithms to 
find the roots (viz. Newton-Raphson algorithm, genetic algorithms and neuronal 
networks), owing to the existence of a large number of subsidiary roots. Besides 
the numerical solutions, transforming eq.(14) yields iterative forms as a kind of 
quasi-regularization (Scheerschmidt and Knoll (1995a)), the system then refers 
to an overdetermined system in the stone manner as discussed above. 

4 N u m e r i c a l  a s p e c t s  

The inversion proposed is based on the linearization and the fact that the prob- 
lem is overdetermined with respect to the unknowns but underdetermined if the 
noise is included, resulting in a least square minimization of a suitable vector 
norm of the defect (Lois (1989), Bertero (1989)), e.g., 

(15) 

As the iteration procedure seems to be amplifying the noise, the regulari- 
zations should be further enhanced. Simple averaging of the retrieved thicknesses 
and orientations with values larger than a certain threshold omitted, avoids 
outliers and leverages, however, structural details, too, thus yielding incorrect 
regularization. 

The stability of the procedure may be enhanced by using more general reg- 
ularizations as, e.g., the Phillips regularization. The most general regularization 
may be of the Ivanov-Phillips-Tichonov-type (see, e.g., (Bertero (1989))), 

(16) 
While the Moore-Penrose inverse minimizes the defect, an additional con- 

straint here allows one to weight the measured data by C1 and to smooth the 
solution Z = (t, kx, ky) by 6'2. Using the Moore-Penrose or similar general- 
izations always allow ill-posed problems with discrete data to be transformed 
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to well-posed, but mostly ill-conditioned, problems: The solution exists and is 
unique, however, mostly unstable. The generalized solution may bc considered 
an average of the true solutions, the resulting generalized inverse including the 
regularization matrices may be 

Minv = ( M t C 1 M  + 7C2) -1M T (17) 

with the suitable regularization factor 3, and matrices C1 and C2, respectively. 
The iterative solution of eq. (11) with this generalized inverse (17) yield a self- 
consisting approach. 

The generalized approach represents the maximum-likelihood solutions if the 
weight matrizes C1 are suitably chosen with respect to the reflections g. Gaussian 
distributed noise can be described by unit weights, Poisson distributed noise 
demands weights inversely proportional to the intensity of the reflections. 

In image processing, however, the regularization is described as a procedure 
smoothing the pixels (i,j) (Huang (1975)) : A solution with small second deriva- 
tives with respect to neighbouring pixels tends to be more accurate. In general, 
any constraint C2 which is quadratic (Huang (1975)), may be used to yield a 
solution resembling eqs.(10) and (17). 

Assuming that the different weights can be separated without a loss of gener- 
ality, the weighting Ca is given by WghtWg,  h, with W ~  [~I o. The smoothing C2 

can be described by matrix filters with respect to the pixels (i,j). A zero-order 
smoothing is equivalent to outlier detection or avoiding levarages (Rousseeuw 
(1977)). 

The regularization parameter  can be bounded (Bertero (1989)), but in the 
physically relevant problems such bounds are too rough and should be est imated 
by numerical tests. To study the confidence level of the solutions the retrieved 
thicknesses and orientations are compared with those used in sinmlated holo- 
grams, which have been performed for either perfect crystals with increasing 
thickness and linearly varying orientation, or for the theoretical grain bound- 
ary of Figs.1 and 4 relaxed by molecular dynamics. To check the reliability and 
accuracy by using simulated inputs is advantageous as one can directly com- 
pare well-known numbers and thus find out the regularization parameter  for the 
best fit. One can use different distance measures like the squared differences or 
the regression coefficient r = cov( Z,.~t,.i . . . .  Zth~orv ) / ( ar~t,.i .... o'th~o,-v ) assuming 
a linear hypothesis for the fit, a ~2 test or cross correlations. Robust  measures 
are very fast and stable: the simple sign test sl = ~sgT~(Z O -  < Z > ) / N  < 1 
of all pixels or the product s2 of neighbouring pixels, for instance allow one 
to detect sytematic errors, whereas weigths which are controlled by the regres- 
sion coefficient, between retrieved and exact data  (Rousseeuw (1977)) enable 
the finding of outliers and leverages. No test may be considered to be perfect 
or superior, because always a large number of differences is reflected by only 
one number. Fig. 6 shows in (a) the regression coefficient r, the sign tests s l ,  
s2, and different log(.g 2) measures as function of testparameters (X'I from the 
convergence error of the retrieval procedure, X2 with and X3 without outlier de- 
tection). Figs. 6(b) and (c) represent the same log(); 2) measures as function of 
the regularization parameter  7 without and including pixel smoothing, respec- 
tively, i.e. (b) with Ca = Cz = I and (c) smoothing of the second derivative 
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Fig. 6. Confidence tests for different measures (regression r, sign tests sl, s2 and Iog(x 2) 
of retrieved versus simulated data ms function of test parameters (a, see text) or ms 
function of the regularization parameter 7: (b) no smoothing C1 = C_~ = I a.nd (c) 
smoothing of the second derivative Ct = I,  C~ = (~i- io=t: l . j - jo: l : t  - 2 ~ i - i o , j - j o  ) 

w i t h  C 1  = / ,  C 2  ~-- [ ~ i - i o + l , j - j o + l  - 2 ~ i - i , , , j - j o ] .  T e s t  1 i n  (a) for comparison i s  

calculated without  any smoothing and normalization.  The  tests 2-18 are applied 
for normalizing the different reflexes and /o r  using different averages over the 
pixels and the reflexes, resp., always with p = 0, + l ,  -t-2. In the tests 19-38 addi- 
tionally the weights C1 are proport ional  to the ampli tudes and intensities of  the 
reflexes, resp, and -y = 10 -5, 10 -4,  10 -3, 10 -2. For the test 39-53 the regulariza- 
tion is related to the a priori information instead of the max imum norm itself, 
and 7 = 10-5, 10-4, 10-3. Clearly can be seen, tha t  the smoothing increases 
the errors, whereas sytematic  errors and low regression coefficients are result ing 
from invaluable normalization. Fur ther  systematic  calculations are necessary to 
find out the best regularization 7, i.e., the compromise between accuracy and 
stability of the retrieval procedure. 

5 C o n c l u s i o n s  

Both the direct solutions (11) and (12,14), i.e. the explicit evaluation of thick- 
ness and orientation as well as the retrieval of the a tomic displacements f rom a 
reconstructed electron wave function at the exit surface of an object,  result in 
part icular  inverse problems of the first kind, viz. the analysis of object parame-  
ters from measured data. Thus, f rom the mathemat ica l  point  of view the retrieval 
procedure is an ill-posed inverse problem requiring addit ional  information abou t  
the periodicity of the object as the basic assumption,  the thickness, the orienta-  
t ion and the unknown reconstructed displacements in order  to make the process 
stable and continuous, to avoid singularities, and to restrict the manifold set of  
solutions possible. The procedure described has t ransformed these difficulties to 
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the mathemat ical  problem of overdetermined equation systems and of determin-  
ing the roots of a function with an incomplete Fourier transform. Normal izat ion 
and regularization of  the solutions enable smoothing,  stabilization and outlier 
detection. 
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1 I n t r o d u c t i o n  

Inverse scattering problems have attracted increased attention in recent years 
due to their appearance in a wide variety of applied areas, for example non- 
destructive testing, medical imaging and geophysical prospecting. Mathe- 
matically, these problems can be divided into three broad groups defined by 
the frequency of the probing wave: low frequency, intermediate frequency, 
and high frequency. In particular, the low and high frequency regimes are 
amenable to asymptotic methods (and hence a linearization of the inversion 
scheme) while at intermediate frequencies (the so-called resonance region) 
the problem is inherently nonlinear and is typically dealt with by nonlinear 
optimization methods. Since in many applications one is forced to work with 
frequencies in the resonance region (due to the conflicting needs of being able 
to  have the probing wave penetrate deeply into the scattering object while 
at the same time achieving sharp resolution of the image) in recent years 
there has been a major effort made in solving inverse scattering problems 
by nonlinear optimization methods. Indeed, at the moment, all methods for 
solving inverse scattering problems in the resonance region are based on such 
methods. For an excellent short introduction to this approach we refer the 
reader to the forthcoming book by Andreas Kitsch ([6]). 

In this paper we would like to briefly discuss a new approach to solving 
inverse scattering problems in the resonance region which totally avoids the 
use of nonlinear optimization methods. In fact, the scheme we are about to 
describe only involves solving a set of linear integral equations of the first 
kind. Since the inverse scattering problem is in fact nonlinear, something 
is obviously lost in such an approach. What is lost is that in our approach 
only the support of anomalies in a piecewise homogeneous background is ob- 
tained rather than the index of refraction inside the anomalies. Furthermore, 
the method requires being able to probe and measure the response around the 
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entire scattering obstacle, thus making it impractical for some applications. 
However, for many applications, particularly in medical imaging and non- 
destructive testing, the conditions for the applicability of our method are 
met and the determination of the support of anomalies is all that is needed. 
For example, in the case of the detection and location of tumors in the body 
by microwaves, it is sufficient to determine if there are in fact tumors present 
and if so what is the support of the tumors (i.e. how big they are). The 
actual vMue of the index of refraction in the tumor is, by comparison, of 
little interest. Similarly, if there are flaws in a material (e.g. a crack) the fact 
that such flaws exist and determining an estimate of their size is the most 
important consideration rather than a complete reconstruction of the sound 
speed or refractive index inside the flaw. 

Our approach for determining the support of anomalies in a material is 
mathematically based on the properties of solutions to interior transmission 
problems (c.f. [2]). Hence, in the next section we will describe the scattering 
problem of interest to us and how our approach to the inverse problem is 
naturally associated to a particular interior transmission problem. Finally, in 
the last section of this paper we will describe the inversion scheme itself as 
well as some of its peculiar characteristics. 

2 I n v e r s e  S c a t t e r i n g  a n d  I n t e r i o r  T r a n s m i s s i o n  

P r o b l e m s  

Consider the two dimensional scattering problem of determining u from the 
equations 

zx~, + k~n(x)u = o in R ~ (1) 

u0:)  = ~'~"~ + u'(~:) (2) 

) rlim V ~ , 0 r  - i k u '  = 0  (3) 

where x E R 2, r = ]x h k > 0 is the wave number and d is a vector 
on the unit circle J? in R 2 giving the direction of the incident plane wave. 
The index of refraction n is assumed to be piecewise constant except for a 
compact region D (bounded by a sufficiently smooth curve OD) in which n 
is continuously differentiable and 

m := 1 - n (4) 

has compact support. It is assumed that the Sommerfield radiation condition 
(3) holds uniformly with respect to ~ = x/lx[. Under these conditions it is 
relatively easy to show that there exists a unique solution to (1)-(3) ([2]) and 
that the scattered field u s has the asymptotic behavior 

eikr 
u' (~)  = ~ u o o ( ~ ;  d) + o ( r - 3 / ~ )  (s)  



88 

as r tends to infinity where uoo is known as the far field pattern of the 
scattered field u a. 

In this paper we are concerned with the inverse problem of determining 
OD from a knowledge of uoo(~ ; d). It is also possible to use incident fields 
other than plane waves (e.g. point sources) and da ta  other than far field da ta  
(e.g. near field data) but  for the sake of simplicity we will not consider these 
cases here. The reader who is interested in such extensions should consult [3]. 
For the case we are interested in we have the following uniqueness theorem of 
Sun and Uhlmann ([9]) which shows that  the discontinuities of n are uniquely 
determined by uo~: 
T h e o r e m  (Sun-Uhlmann): Let nt ,  n2 be in L°°(R 2) and suppose ml = 1 - 
nl  and ms = 1 - n2 have compact support.  If u ~  is the far field pa t tern  
corresponding to nj and u ~ ( ~ ;  d) = u ~ ( ~ ;  d) for all ~, d E 12, then n l - n 2  E 
Ca(R 2) for every a ,  0 < a < 1. 

As previously mentioned, our method for determining OD from uoo is 
based on transforming the problem to that  of the behavior of solutions to an 
interior transmission problem. For the sake of simplicity, we will restrict our 
at tention to the case when D is equal to the support  of m, i.e. the background 
is constant ([1]). The  more general case of a piecewise constant background is 
t reated in [3]. The basic difference between the two cases is tha t  for a constant 
background we must consider the far field operator F : L2(12) ~ L2(12) 
defined by 

(Fg)(~)  := f uoo(~; d)g(d)ds(d) (8) 

whereas for a piecewise constant background we must consider the modified 
far field operator Fo : 52(1-1) -* i2 (~)  defined by 

:= f[uoo( ; a) - u5(  ; a ) lg (a)ds (a)  
/] 

(7) 

0 is the far field pat tern corresponding to the scattering of a plane where uoo 
wave by the piecewise constant background (i.e. D is the empty  set). 

In either case, the basic idea of our method (to be described in the next  
section of this paper) is to try and find a superposition of plane waves such 
that  the scattered field corresponding to this superposition is a constant 
multiple of a point source ~(.;  y0) located at a point Yo E D\OD. Since the 
scattered field is uniquely determined by its far field pat tern ([2]), it suffices 
to have the far field pattern corresponding to this superposition agree with 
a constant multiple of the far field pat tern of 4~(.; Y0). In particular, for the 
special case of a constant background, we can set 

• (x ; = H0(1)(klx -  01), • # (8) 
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where H~ 1) is a Hankel function of the first kind of order zero. Then, ,  since 
4( . ;  y0) has a far field pat tern given by 7e -ik~'v° where 

e_i~.14, = (9) 

we want to find a function g(.; Y0) e L2(I2) such that  

(Fg)(~) = e -ik~'v° (I0) 

is satisfied. A short calculation using Rellich's lemma ([2]) shows that this 
can be done if and only if there exist functions w and v satisfying the inferior 
transmission problem 

A2w + k2n(x)w = 0 in D 

&2v + k2v = 0 (11) 

= -r- '  n  )(klx- vol) 

O (w-v)  = 7 - 1 0  H(ol)(klx - Yol) 

on OD 

(12) 

where u is the unit outward normal to OD and v is a Herglotz wave function 
with kernel g, i.e. v is a solution of the Helmholtz equation A2v + k2v = 0 of 
the form 

v(x) = f ei~'dg(d)ds(d) (13) o 

In order to proceed to the description of our inversion scheme for determining 
OD from uoo, we will need the following two theorems concerning the interior 
transmission problem due to Rynne and Sleeman ([8]; see also [4]) and Colton 
and Pot thast  ([4]). 

T h e o r e m  (Rynne-Sleeman): Assume that  Im n(z) > 0 for x e D. Then  there 
exists a unique solution v, w E H~oc(D ) N L~(D) to the interior transmission 
problem ( l l ) ,  (12) such that  v - w E H~(D). 
T h e o r e m  (Colton-Potthast) :  Assume that  I ron (z )  > 0 for x E D. Then 
the solution v of the interior transmission problem can be approximated in 
L2(D) by a Herglotz wave function. 

We will now show how these theorems can be used to derive an inversion 
scheme for the inverse scattering problem that  is the subject of this paper. 
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3 T h e  S o l u t i o n  o f  t h e  I n v e r s e  S c a t t e r i n g  P r o b l e m  

As stated in the previous section, the basic idea of our inversion scheme is 
to determine g such that  (10) is satisfied. If this can be done, the Herglotz 
wave function v with kernel g satisfies the interior transmission problem (11), 
(12). We would then like to conclude that,  on OD, v becomes unbounded as Y0 
tends to cgD and hence so does Ilgl]L2(n ). If this is true then OD is determined 
by these points y0 such that  the L~-norm of g(- ; Y0) becomes unbounded. In 
practice, we can do this by solving (10) for Y0 on a rectangular grid known 
a priori to contain D and then look for those values of Y0 where IlgllL~(o) is 
large. 

Unfortunately, (10) is a (improperly posed) linear integral equation of 
the first kind and in general we cannot conclude that  a solution g = g(.;  Y0) 
exists. Even if a solution does exist it is not clear from (11), (12) that  v (and 
hence IIgHL2(a)) becomes unbounded as Y0 tends to OD. To deal with these 
problems, we assume that  Imn(x)  > 0 for x E D and proceed as follows 
(see [1] and [4] for details). By the Rynne-Sleeman theorem there exists a 
solution v, w to the interior transmission problem and by Green's formula 
and the trace theorem we have that  for x E D\OD 

w(x) = v(x) - ik2 / /  4~(x " y)m(y)w(y)dy --( 
D 

i 
+-~ / { [ v ( y ) - - w ( y ) ] ~  ~ ( x ; y ) - - , ( x  

OD 

Using 

] ( " ( o i ' ( k l y - Y o ' ) ~ (  x 

OD 

(14) 

; y) N [v(y) - w(y)] e . (y)  

(15) 
for x E D\OD and the boundary conditions (12), we can now conclude from 
(14) and (15) that  

w(x) = v(x) - ik2 / /  ~(x " y)m(y)w(y)dy (16) 
-T 

D 

for x E D\OD. 
We now use the Colton-Potthast theorem to deduce that  for any e > 0 

there exists g E L2(/2) such that  

II(Fg)(~) - e-ik~'~°llL2(a ) < ,  (17) 

and 
IIV -- VglIL2(O ) <~ ' (18) 
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where vg is the Herglotz wave function with kernel g. Assuming tha t  v 9 
depends continuously on its boundary data  (e.g. this is true if k s is not a 
Dirchlet eigenvalue) we can conclude that ,  if max Ivg (z" y0)l remains bounded 

~eOD 
as Y0 tends to egO, then from (18) so does IIv(. ;yo)[]L2(D). From the integral 
equation (16) we now have that  w • L2(D) is bounded independently of 
yo • D\cgD and hence, using the mapping properties of volume potentials, 
] lw-  vl[tt~(~ ) is bounded independently of Yo • D\OD. By the trace theorem 
we now have that  []w--VIIH3/=(OD) is bounded and this contradicts (12). Hence 
vg(z ; Y0) for z • D becomes unbounded as Y0 tends to OD (and thus so does 

IlgllL,(o)). 
From the above analysis we see that  if Im n > 0 in D then for every e > 0 

and Yo • D\OD there exists a function g(';Y0) • L~(12) such tha t  (17) is 
satisfied and 

lim IIg('; Yo)IIL=(n) = oo . (19) 
yo--*OD 

More generally, it can be shown that  F is injective with dense range in 
L2(I2) ([2]). Thus OD can be determined by using an appropriate regulariza- 
tion method to solve (10) and then determining the values of Y0 for which 
IIg(" ; Y0)IIL=(a) becomes large. Note that  this method is a linear method and 
makes no statement about the values of the index of refraction in D. The 
only quantity which is determined is OD. For numerical examples using this 
method we refer the reader to [1] (constant background) and [3] (piecewise 
constant background). Similar methods also apply to obstacle scattering ([1]) 
and in this case a related (but different!) method has recently been developed 
by Potthast  ([7]). We note in passing that  the inversion method described in 
this paper has some resemblance to the method introduced by Isakov ([5]) to 
prove uniqueness theorems for inverse scattering problems. 

An intriguing and somewhat delicate feature of our approach for determin- 
ing OD is that  it makes a very explicit use of the improperly posed nature 
of the inverse scattering problem by looking for a solution of the integral 
equation of the first kind (10) that  becomes unbounded as Y0 tends to c3D. 
In particular, the regularization method used to solve (10) must allow for the 
fact that  the solution is in fact unbounded as y0 tends to OD, e.g. the penalty 
term in the Tikhonov regularization method should involve the derivative of 
g rather than g itself. 
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1 I n t r o d u c t i o n  

Inverse scattering problems have attracted increased attention in recent years 
due to their appearance in a wide variety of applied areas, for example non- 
destructive testing, medical imaging and geophysical prospecting. Mathe- 
matically, these problems can be divided into three broad groups defined by 
the frequency of the probing wave: low frequency, intermediate frequency, 
and high frequency. In particular, the low and high frequency regimes are 
amenable to asymptotic methods (and hence a linearization of the inversion 
scheme) while at intermediate frequencies (the so-called resonance region) 
the problem is inherently nonlinear and is typically dealt with by nonlinear 
optimization methods. Since in many applications one is forced to work with 
frequencies in the resonance region (due to the conflicting needs of being able 
to  have the probing wave penetrate deeply into the scattering object while 
at the same time achieving sharp resolution of the image) in recent years 
there has been a major effort made in solving inverse scattering problems 
by nonlinear optimization methods. Indeed, at the moment, all methods for 
solving inverse scattering problems in the resonance region are based on such 
methods. For an excellent short introduction to this approach we refer the 
reader to the forthcoming book by Andreas Kitsch ([6]). 

In this paper we would like to briefly discuss a new approach to solving 
inverse scattering problems in the resonance region which totally avoids the 
use of nonlinear optimization methods. In fact, the scheme we are about to 
describe only involves solving a set of linear integral equations of the first 
kind. Since the inverse scattering problem is in fact nonlinear, something 
is obviously lost in such an approach. What is lost is that in our approach 
only the support of anomalies in a piecewise homogeneous background is ob- 
tained rather than the index of refraction inside the anomalies. Furthermore, 
the method requires being able to probe and measure the response around the 
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entire scattering obstacle, thus making it impractical for some applications. 
However, for many applications, particularly in medical imaging and non- 
destructive testing, the conditions for the applicability of our method are 
met and the determination of the support of anomalies is all that is needed. 
For example, in the case of the detection and location of tumors in the body 
by microwaves, it is sufficient to determine if there are in fact tumors present 
and if so what is the support of the tumors (i.e. how big they are). The 
actual vMue of the index of refraction in the tumor is, by comparison, of 
little interest. Similarly, if there are flaws in a material (e.g. a crack) the fact 
that such flaws exist and determining an estimate of their size is the most 
important consideration rather than a complete reconstruction of the sound 
speed or refractive index inside the flaw. 

Our approach for determining the support of anomalies in a material is 
mathematically based on the properties of solutions to interior transmission 
problems (c.f. [2]). Hence, in the next section we will describe the scattering 
problem of interest to us and how our approach to the inverse problem is 
naturally associated to a particular interior transmission problem. Finally, in 
the last section of this paper we will describe the inversion scheme itself as 
well as some of its peculiar characteristics. 

2 I n v e r s e  S c a t t e r i n g  a n d  I n t e r i o r  T r a n s m i s s i o n  

P r o b l e m s  

Consider the two dimensional scattering problem of determining u from the 
equations 

zx~, + k~n(x)u = o in R ~ (1) 

u0:)  = ~'~"~ + u'(~:) (2) 

) rlim V ~ , 0 r  - i k u '  = 0  (3) 

where x E R 2, r = ]x h k > 0 is the wave number and d is a vector 
on the unit circle J? in R 2 giving the direction of the incident plane wave. 
The index of refraction n is assumed to be piecewise constant except for a 
compact region D (bounded by a sufficiently smooth curve OD) in which n 
is continuously differentiable and 

m := 1 - n (4) 

has compact support. It is assumed that the Sommerfield radiation condition 
(3) holds uniformly with respect to ~ = x/lx[. Under these conditions it is 
relatively easy to show that there exists a unique solution to (1)-(3) ([2]) and 
that the scattered field u s has the asymptotic behavior 

eikr 
u' (~)  = ~ u o o ( ~ ;  d) + o ( r - 3 / ~ )  (s)  
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as r tends to infinity where uoo is known as the far field pattern of the 
scattered field u a. 

In this paper we are concerned with the inverse problem of determining 
OD from a knowledge of uoo(~ ; d). It is also possible to use incident fields 
other than plane waves (e.g. point sources) and da ta  other than far field da ta  
(e.g. near field data) but  for the sake of simplicity we will not consider these 
cases here. The reader who is interested in such extensions should consult [3]. 
For the case we are interested in we have the following uniqueness theorem of 
Sun and Uhlmann ([9]) which shows that  the discontinuities of n are uniquely 
determined by uo~: 
T h e o r e m  (Sun-Uhlmann): Let nt ,  n2 be in L°°(R 2) and suppose ml = 1 - 
nl  and ms = 1 - n2 have compact support.  If u ~  is the far field pa t tern  
corresponding to nj and u ~ ( ~ ;  d) = u ~ ( ~ ;  d) for all ~, d E 12, then n l - n 2  E 
Ca(R 2) for every a ,  0 < a < 1. 

As previously mentioned, our method for determining OD from uoo is 
based on transforming the problem to that  of the behavior of solutions to an 
interior transmission problem. For the sake of simplicity, we will restrict our 
at tention to the case when D is equal to the support  of m, i.e. the background 
is constant ([1]). The  more general case of a piecewise constant background is 
t reated in [3]. The basic difference between the two cases is tha t  for a constant 
background we must consider the far field operator F : L2(12) ~ L2(12) 
defined by 

(Fg)(~)  := f uoo(~; d)g(d)ds(d) (8) 

whereas for a piecewise constant background we must consider the modified 
far field operator Fo : 52(1-1) -* i2 (~)  defined by 

:= f[uoo( ; a) - u5(  ; a ) lg (a)ds (a)  
/] 

(7) 

0 is the far field pat tern corresponding to the scattering of a plane where uoo 
wave by the piecewise constant background (i.e. D is the empty  set). 

In either case, the basic idea of our method (to be described in the next  
section of this paper) is to try and find a superposition of plane waves such 
that  the scattered field corresponding to this superposition is a constant 
multiple of a point source ~(.;  y0) located at a point Yo E D\OD. Since the 
scattered field is uniquely determined by its far field pat tern ([2]), it suffices 
to have the far field pattern corresponding to this superposition agree with 
a constant multiple of the far field pat tern of 4~(.; Y0). In particular, for the 
special case of a constant background, we can set 

• (x ; = H0(1)(klx -  01), • # (8) 
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where H~ 1) is a Hankel function of the first kind of order zero. Then, ,  since 
4( . ;  y0) has a far field pat tern given by 7e -ik~'v° where 

e_i~.14, = (9) 

we want to find a function g(.; Y0) e L2(I2) such that  

(Fg)(~) = e -ik~'v° (I0) 

is satisfied. A short calculation using Rellich's lemma ([2]) shows that this 
can be done if and only if there exist functions w and v satisfying the inferior 
transmission problem 

A2w + k2n(x)w = 0 in D 

&2v + k2v = 0 (11) 

= -r- '  n  )(klx- vol) 

O (w-v)  = 7 - 1 0  H(ol)(klx - Yol) 

on OD 

(12) 

where u is the unit outward normal to OD and v is a Herglotz wave function 
with kernel g, i.e. v is a solution of the Helmholtz equation A2v + k2v = 0 of 
the form 

v(x) = f ei~'dg(d)ds(d) (13) o 

In order to proceed to the description of our inversion scheme for determining 
OD from uoo, we will need the following two theorems concerning the interior 
transmission problem due to Rynne and Sleeman ([8]; see also [4]) and Colton 
and Pot thast  ([4]). 

T h e o r e m  (Rynne-Sleeman): Assume that  Im n(z) > 0 for x e D. Then  there 
exists a unique solution v, w E H~oc(D ) N L~(D) to the interior transmission 
problem ( l l ) ,  (12) such that  v - w E H~(D). 
T h e o r e m  (Colton-Potthast) :  Assume that  I ron (z )  > 0 for x E D. Then 
the solution v of the interior transmission problem can be approximated in 
L2(D) by a Herglotz wave function. 

We will now show how these theorems can be used to derive an inversion 
scheme for the inverse scattering problem that  is the subject of this paper. 
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3 T h e  S o l u t i o n  o f  t h e  I n v e r s e  S c a t t e r i n g  P r o b l e m  

As stated in the previous section, the basic idea of our inversion scheme is 
to determine g such that  (10) is satisfied. If this can be done, the Herglotz 
wave function v with kernel g satisfies the interior transmission problem (11), 
(12). We would then like to conclude that,  on OD, v becomes unbounded as Y0 
tends to cgD and hence so does Ilgl]L2(n ). If this is true then OD is determined 
by these points y0 such that  the L~-norm of g(- ; Y0) becomes unbounded. In 
practice, we can do this by solving (10) for Y0 on a rectangular grid known 
a priori to contain D and then look for those values of Y0 where IlgllL~(o) is 
large. 

Unfortunately, (10) is a (improperly posed) linear integral equation of 
the first kind and in general we cannot conclude that  a solution g = g(.;  Y0) 
exists. Even if a solution does exist it is not clear from (11), (12) that  v (and 
hence IIgHL2(a)) becomes unbounded as Y0 tends to OD. To deal with these 
problems, we assume that  Imn(x)  > 0 for x E D and proceed as follows 
(see [1] and [4] for details). By the Rynne-Sleeman theorem there exists a 
solution v, w to the interior transmission problem and by Green's formula 
and the trace theorem we have that  for x E D\OD 

w(x) = v(x) - ik2 / /  4~(x " y)m(y)w(y)dy --( 
D 

i 
+-~ / { [ v ( y ) - - w ( y ) ] ~  ~ ( x ; y ) - - , ( x  

OD 

Using 

] ( " ( o i ' ( k l y - Y o ' ) ~ (  x 

OD 

(14) 

; y) N [v(y) - w(y)] e . (y)  

(15) 
for x E D\OD and the boundary conditions (12), we can now conclude from 
(14) and (15) that  

w(x) = v(x) - ik2 / /  ~(x " y)m(y)w(y)dy (16) 
-T 

D 

for x E D\OD. 
We now use the Colton-Potthast theorem to deduce that  for any e > 0 

there exists g E L2(/2) such that  

II(Fg)(~) - e-ik~'~°llL2(a ) < ,  (17) 

and 
IIV -- VglIL2(O ) <~ ' (18) 
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where vg is the Herglotz wave function with kernel g. Assuming tha t  v 9 
depends continuously on its boundary data  (e.g. this is true if k s is not a 
Dirchlet eigenvalue) we can conclude that ,  if max Ivg (z" y0)l remains bounded 

~eOD 
as Y0 tends to egO, then from (18) so does IIv(. ;yo)[]L2(D). From the integral 
equation (16) we now have that  w • L2(D) is bounded independently of 
yo • D\cgD and hence, using the mapping properties of volume potentials, 
] lw-  vl[tt~(~ ) is bounded independently of Yo • D\OD. By the trace theorem 
we now have that  []w--VIIH3/=(OD) is bounded and this contradicts (12). Hence 
vg(z ; Y0) for z • D becomes unbounded as Y0 tends to OD (and thus so does 

IlgllL,(o)). 
From the above analysis we see that  if Im n > 0 in D then for every e > 0 

and Yo • D\OD there exists a function g(';Y0) • L~(12) such tha t  (17) is 
satisfied and 

lim IIg('; Yo)IIL=(n) = oo . (19) 
yo--*OD 

More generally, it can be shown that  F is injective with dense range in 
L2(I2) ([2]). Thus OD can be determined by using an appropriate regulariza- 
tion method to solve (10) and then determining the values of Y0 for which 
IIg(" ; Y0)IIL=(a) becomes large. Note that  this method is a linear method and 
makes no statement about the values of the index of refraction in D. The 
only quantity which is determined is OD. For numerical examples using this 
method we refer the reader to [1] (constant background) and [3] (piecewise 
constant background). Similar methods also apply to obstacle scattering ([1]) 
and in this case a related (but different!) method has recently been developed 
by Potthast  ([7]). We note in passing that  the inversion method described in 
this paper has some resemblance to the method introduced by Isakov ([5]) to 
prove uniqueness theorems for inverse scattering problems. 

An intriguing and somewhat delicate feature of our approach for determin- 
ing OD is that  it makes a very explicit use of the improperly posed nature 
of the inverse scattering problem by looking for a solution of the integral 
equation of the first kind (10) that  becomes unbounded as Y0 tends to c3D. 
In particular, the regularization method used to solve (10) must allow for the 
fact that  the solution is in fact unbounded as y0 tends to OD, e.g. the penalty 
term in the Tikhonov regularization method should involve the derivative of 
g rather than g itself. 
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1 I n t r o d u c t i o n  

The inverse problem we consider is to reconstruct the shape of 
a scattering obstacle from a knowledge of the far field pat tern 
for the scattering of incident time-harmonic acoustic or electro- 
magnetic plane waves. For the sake of simplicity we confine ou, 
presentation to the inverse Dirichlet problem in two dimensions, 
that  is, to scattering by infinitely long cylindrical sound-soft or 
perfectly conducting obstacles. However, much of the analysis, in 
principle, can be extended to other boundary conditions and also 
to the three-dimensional case. 

Roughly speaking we can distinguish between two different ap- 
proaches for the approximate solution of the inverse obstacle scat- 
tering problem. In a first group of methods the inverse obstacle 
problem is separated into a linear ill-posed part for the recon- 
struction of the scattered wave from its far field pattern and a 
nonlinear well-posed part for finding the location of the boundary 
of the scatterer from the boundary condition for the total field. In 
a second group of methods the inverse obstacle problem is either 
considered as an ill-posed nonlinear operator equation or refor- 
mulated as a nonlinear optimization problem in an output least 
squares sense. 

Up until a few years ago research concentrated mainly on the 
first group of methods for the following reason: Each algorithm 
of the second group requires the solution of the direct scattering 
problem for different domains at each step of the iteration method 
used to arrive at an approximate solution. Hence, these methods 
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seemed to be too costly in order to be competitive with the first 
group of methods and in the monograph [4] one can find an ex- 
tensive treatment of two typical examples for the first group but 
only little material on the second approach. However, with the 
more recent development of computer hard and soft ware, com- 
puting time becomes a less important issue and therefore a second 
thought on the above argument seems to be appropriate. Conse- 
quently, in this survey we shall concentrate more on describing 
the basic ideas of a regularized Newton iteration and a Landwe- 
ber iteration as methods of the second group of approaches. A 
substantial part of these methods have been developed through 
the interaction of the inverse scattering groups at the universities 
of Delaware, Erlangen and GSttingen. 

2 T h e  inverse  s c a t t e r i n g  p r o b l e m  

We denote the cross section of the cylindrical obstacle by D and 
assume that  D C IR 2 is a bounded and simply connected domain 
with boundary OD of class C 2. The simplest direct scattering 
problem is, given an incident field u i, to find the total field, that  
is, the superposition u = u i + u s such that u satisfies the reduced 
wave equation or Helmholtz equation 

Au+k2u=O i n ]R  2 \ D  (1) 

with wave number k > 0, the Dirichlet boundary condition 

u = 0 on OD (2) 

and the Sommerfeld radiation condition 

l i m  \ 0 r  s = 0, r = Ixl, (3)  

uniformly for all directions. In acoustics the Dirichlet condition 
(2) corresponds to scattering from a sound-soft obstacle whereas 
in electromagnetics it models scattering from a perfect conductor 
with the electromagnetic field being E-polarized. Provided the 
incident field u i is an entire solution to the Helmholtz equation, 
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then there exists a unique solution u e C2(IR2 \ b) n C', (1R2 \ D) 
to the direct scattering problem (1)-(3) for 0 < c~ < 1. For details 
we refer to [3], [4]. 

The Sommerfeld radiation condition (3) leads to an asymptotic 
behavior of the form 

+ o  , Ixl  . (4) 

The function uoo, defined on the unit circle F2 := {z E ]R 2 : 
[z[ = 1), is known as the far field pattern of the scattered wave 
u s. The inverse problem we are concerned with in this survey is, 
given the far field pattern u~  of the scattered wave u s for one 
incoming plane wave u i = e ikx'd with incident direction d E J2, 
to determine the shape of the scatterer D. This inverse problem 
is nonlinear, since the solution to the direct scattering problem 
depends nonlinearly on the boundary OD and it is improperly 
posed, since finding the scattered wave u 8 from its far field pat- 
tern uoo is severely improperly posed. We want to consider this 
inverse problem for frequencies in the resonance region, that  is, 
for scatterers D and wave numbers k such that the wavelengths 
27r/k is of a comparable size to the diameter of the scatterer. In 
particular, low frequency methods like impedance tomography or 
high frequency methods like physical or geometrical optics do not 
yield valid approximations in this intermediate frequency range. 

For a fixed incident field u;, the solution to the direct scatter- 
ing problem defines an operator F : 0D ~-* uoo which maps the 
boundary OD of the scatterer D onto the far field pat tern uoo. In 
terms of this operator, given a far field pattern uoo, the inverse 
problem consists in solving the nonlinear and improperly posed 
operator equation 

F ( O D ) = u ~  (5) 

for the unknown boundary OD. Both for the theoretical investiga- 
tion and the numerical solution of equation (5) a parametrization 
of the admissible boundary curves is required. In this survey, for 
the sake of simplicity, we assume the unknown scatterer to be 
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starlike with respect to the origin. However, we wish to empha- 
size that  the following analysis can be extended to a wider class 
of boundary representations. We parametrize 

OD = {r(z) z : z  • ;2} 

with some function r e C~_(J2) where by C~.(/2) we denote the 
set of twice continuously differentiable functions r : ~ --~ (0, ec). 
Then we may consider F as a mapping from C~.(J2) into L2(J2) 
and will write F(r) ins tead of F(OD). 

We proceed by summarizing some basic properties of the opera- 
tor F.  A first question to ask about the inverse scattering problem 
is uniqueness. In our formulation of the inverse problem we can 
state the following uniqueness result. 

T h e o r e m  1 The far field operator F :  C~(J~) ~ L:(J)) is injec- 
tive on the ball {r e C ~ ( n ) :  kllrll  < ¢o} where ¢o -- 2.40482 . . . .  
denotes the smallest positive zero of the Bessel function Jo of or- 
der zero. 

Proof. This extension of a classical result of Schiffer is due to 
Colton and Sleeman [5] (see also [4], p. 107). [] 

The ill-posedness of the inverse scattering problem is expressed 
through the following regularity property of F. 

T h e o r e m  2 The far field operator F : C~(J~) ---, L2(J2) is con- 
tinuous and compact. 

Proof. See Theorem 5.7 in [4]. [] 

The following result on the differentiability of F is of basic 
importance for the foundation of iterative methods for the inverse 
obstacle scattering problem, that is, for the iterative solution of 
(5). 

T h e o r e m  3 The far field operator F : C~(9)  --+ L~(~) is Frdchet 
differentiable. The derivative is given by 

F'(r) h 



97 

where v~ is the far field pattern of the solution v to the Helmholtz 
equation 

Av  + k2v = O in lit 2 \ D (6) 
satisfying the Sommerfeld radiation condition and the Dirichlet 
boundary condition 

Ou 
v =  - u .  tz ~ on OD (7) 

where h(r(z)) = h(z ) z ,  z E Y2, and u denotes the outward unit 
normal to cOD. 

Proof. For a proof via Hilbert space methods we refer to The- 
orem 5.7 in [4] and to Kirsch [10]. Proofs by boundary integral 
equation methods are described by Potthast [18], [19], [20] and in 
[131, [14]. [] 

Since F'(r) h is a far field pattern, the Fr~chet derivative clearly 
is smoothing and therefore F ' ( r )  : L : (~)  -~ i~(O) is a compact 
operator which is in agreement with Theorem 2 (see Theorem 4.19 
in [4]). For the linearized operator we have the following proper- 
ties which are of relevance for the application of regularization 
techniques to the linearized equation (5). 

T h e o r e m  4 The Frdchet derivative F'(r) : L2([2) --~ L2([2) is 
injective and has dense range. 

Proof. We refer to [6], [9], [15] and note that the injectivity is 
a consequence of the boundary condition (7) and Holmgren's 
uniqueness theorem. 

3 A r egu l a r i zed  N e w t o n  m e t h o d  

We now proceed with describing the application of Newton's method 
to the solution of 

F( r )  = u~. (8) 

In the usual fashion, the nonlinear equation (8) is replaced by the 
linearized equation 

F(r)  + F'(r)  h = u~¢ (9) 
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which has to be solved for h in order to improve an approximate 
boundary curve given by the radial function r into the new ap- 
proximation given by F = r + h. Then Newton's method consists 
in iterating this procedure, i.e., 

F ' ( r , ~ ) ( r . + x - r . ) = u ~ - F ( r . ) ,  n = 0,1,2, . . . .  (10) 

The question of uniqueness for the linear equation (9) is settled 
through Theorem 4. Since F ' ( r )  is compact, the linear equation 
(9) is ill-posed. Therefore regularization techniques like Tikhonov 
regularization or singular value cut-off have to be employed (see 
[121). 

For practical computations h is taken from an appropriately 
chosen finite dimensional subspace WN C C2(f2) with dimension 
N and equation (9) is approximately solved by projecting it onto 
another finite dimensional subspace of L2($2). The most conve- 
nient projection is given through collocation at M equidistantly 
spaced points z l , . . . ,  ZM E .(2. Then writing 

N 
h = E ajhj  

j = l  

where ha , . . . ,  hN denotes a basis of WN, w e  have to solve the 
linear system 

N 

r ,  a~ (F'(~) hj)(~,) = ~=(z~) - F(~)(z,), 
j=l 

i = l , . . . , M ,  (11) 

either by Tikhonov regularization or singular value cut-off. The 
Tikhonov regularization is equivalent to minimizing the penalized 
defect 

M N 2 N 

E aj(F'(~) hj)(zO - ~ ( z O  + Y(~)(zd + ~ 52 aj 
i=1 j = l  

(12) 

with some regularization parameter cr > 0 by solving the corre- 
sponding normal equations. 
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In order to set up the linear system (11), in each iteration 
step the direct problem for the boundary OD given by the ra- 
dial function r has to be approximately solved for the evaluation 
of F(r)(z~) and in order to obtain the normal derivative Ou/Ov 
of the total field u which enters the boundary condition (7) for 
the Fr6chet derivative. In principle, this can be done by any nu- 
merical method for solving the exterior Dirichlet problem for the 
Helmholtz equation. However, we strongly recommend using a 
boundary integral equation approach based on a combination of 
a double- and a single-layer potential together with a Nystrbm 
method for the numerical solution of the integral equation as de- 
scribed in [4]. It is also advantageous to set the integral equa- 
tion up through the use of the Green's representation formula 
in a manner which automatically yields Ou/Ov on the boundary 
(90. In order to compute the matrix entries (F'(r) hj)(zi) one has 
solve N additional direct problems for the same boundary OD 
and different boundary values given by (7) for the basis functions 
h = hi, j = 1 , . . . ,  N. Hence, in principle, one has to solve the 
same linear system as for the evaluation of F(r)(z~) for N ad- 
ditional different right hand sides which can be cheaply done by 
using an LR-decomposition. As a stopping rule for the number of 
iterations we suggest to use the residual R := IIF(r) - u~ollL2(S)) 
and terminate the iterations when the difference of the value of 
R for two consecutive iterations is less than a tolerance value 
or less than the noise level if working with noisy data, i.e., we 
suggest using the discrepancy principle. 

For numerical reconstructions by regularized Newton iterations 
as described above using trigonometric polynomials for the ap- 
proximating space we refer to Kirsch [11] and to [13], [14] for the 
inverse Dirichlet problem and to Mbnch [16] for the inverse Neu- 
mann problem. From a numerical point of view it might be advan- 
tageous to replace the gobal trigonometric functions by functions 
with a more local structure. In order to illustrate this, we choose 
L(t) := exp ~-3~ sin 2 ~) with some 7 > 0 and use approximations 
of the form 

2N-1  

r(t) = ~ ajL(N(t  - tj)) 
j=O 



d.  

where tj = j r r /N .  For the following numerical example the bound- 
ary is given by the parametric representation 

x( t )  = (cost + 0.15 sint  + 0.35 cos 2t - 0.35, 1.2 sin t + 0.15 cos t) 

with 0 _< t _< 2r  which describes a kite-shaped starlike curve. 
For the solution of the boundary integral equations we used the 
NystrSm method mentioned above with 32 grid points for the 
inverse algorithm and with 128 grid points and a different coupling 
parameter for generating the synthetic data. As initial guess for 
the Newton iteration we chose the unit circle. In the figures, the 
dashed lines give the exact boundary curve and the full lines give 
the reconstructions. The arrows indicate the incident directions 

I f-) 
I 

, I  

I00 

N=8,  7 = 3 ,  a = 0.01 

F i g .  1. Recons t ruc t ion  of k i te -shaped  sca t t e re r  for k : 1 

As to be expected, using the wave number k = 3 yields better  
reconstructions in the illuminated part of the scatterer and poorer 
reconstructions in the shadow region. 

A quasi-Newton or frozen Newton method was investigated in 
[15]. Related Newton schemes have been considered by Murch, 
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Tan and Wall [171, by Roger [22], by Tobocman [23] and by Wang 
and Chen [24]. The existing numerical examples provide evidence 
for the practicality of the regularized Newton method in inverse 
obstacle scattering. However further research is needed to improve 
on its efficiency. 
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N = 8 ,  ~ ,=3 ,  a - - 0 . 1  

Fig.  2. Reconstruction of kite-shaped scatterer for k = 3 

A convergence analysis of the regularized Newton iteration for 
nonlinear ill-posed equations based on stopping rules via a dis- 
crepancy principle has been developed Blaschke, Neubauer and 
Scherzer [1]. However, these general convergence results, so far, 
could not be applied for obtaining convergence results for the 
regularized Newton method in inverse obstacle scattering. 

4 Landweber i terat ion 

The Landweber iteration has been studied and applied extensively 
for the solution of linear ill-posed equations (see [12]). More re- 
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cently its use in the form 

(13) 

for the iterative solution of nonlinear ill-posed problems has been 
suggested by Hanke, Neubauer and Scherzer [7]. Here, we denote 
by [F'(r)]* : L2(/2) ~ L2(~?) the adjoint operator of the Fr~chet 
derivative F~(r) and # > 0 is an appropriately chosen parame- 
ter ensuring that the iteration operator I -  #[F'(r)J*F(r) is non 
expansive. 

For a characterization of the explicit form of [F'(r)]* we need 
to make use of special solutions of the Helmholtz equation called 
Herglotz wave functions. These are defined by 

wi(x) := £ g(d)e ik~:'d ds(d), x • IF{ 2, (14) 

where g • L2(/?) is called the kernel of w i (c.f. [41). Note that ,  by 
superposition, for the far field pattern woo corresponding to the 
solution w ~ of 

z w" + " = 0 in \ b (15) 

subject to the Dirichlet boundary condition 

w i + w  ~ = 0  o n O D  (16) 

and the Sommerfeld radiation condition we have that 

w~o(z) = £ uoo(z;d)g(d)ds(d), z e [2. (17) 

Here, we indicate the dependence on the incident direction by 
writing uoo(. ;d) for the far field pattern of the scattered wave 
u~( • ;d) for plane wave incidence ui(x; d) = e ~k~d. For the proof 
of the following theorem we refer to [6], [9]. 

T h e o r e m  5 The adjoint operator [F'(r)]* : L2(g?) --, L~(~?) of 
the Frdchet derivative F~(r) is given through 

[F ' ( r ) ]*( f ) ( z ) -  x/8rr------£ z .  a(r(z)), z • f2, (18) 
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where  
O~ O{w i + w~} 

on  O D  a := v cg---'u Ou 

and w' i~ the I~rergZotz wave/unction with ker.eZ g(d) = / ( - d )  
and w ~ denotes the solution of (15)-(16). 

As in the regularized Newton method, for each step of the 
Landweber iteration the direct scattering problem for the bound- 
ary O D  given by the radial function r has to be solved for the eval- 
uation of the right hand side F(r) .  Then one has to compute the 
Herglotz wave function w i with kernel g given via f = F ( r )  - u ~  

and then solve the direct scattering problem (15)-(16) for the 
boundary data w i instead of u i. Hence, one step of the Landweber 
iteration is far less costly than one step of the Newton iteration. 
However this advantage is balanced out through a notably slower 
convergence of the Landweber iteration. 

Numerical implementations of the Landweber iteration for in- 
verse obstacle scattering problems have been given by Hanke, Het- 
tlich and Scherzer [6] for sound-soft obstacles and by Hettlich [8] 
for sound-hard obstacles. A convergence analysis of the Landwe- 
ber iteration for nonlinear ill-posed equations based on stopping 
rules via a discrepancy principle has been developed by Hanke, 
Neubauer and Scherzer [7]. However, unfortunately these general 
convergence results, so far, could not be employed to completely 
analyze the convergence behavior of the Landweber iteration in 
inverse obstacle scattering. 

5 S ta r t ing  approx ima t ions  

Both the regularized Newton iteration and the Landweber iter- 
ation and most other methods for the approximate solution of 
inverse obstacle scattering problems rely on some a priori infor- 
mation for obtaining initial approximations to start the corre- 
sponding iterative procedures. In this final section we will briefly 
outline the principle ideas of a very simple method for finding 
coarse approximations for the solution to the inverse scattering 
problem without any use of a priori information on the obstacle 
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which has been suggested by Colton and Kirsch [2] and which 
might be used to obtain initial approximations. 

This method makes use of Herglotz wave functions as intro- 
duced in the previous section. Its basic idea is to t ry and find 
a Herglotz wave function w i with kernel g, i.e., a superposition 
of plane waves, such that  the corresponding scattered wave w * 
coincides with a point source ~ ( . , ( )  located at a point ( in the 
interior of the scatterer D. Here by ~ we denote the fundamental  
solution to the Helmholtz equation 

/H( : )  
¢ ( x , y ) : =  4 0 ( k l x - y l ) ,  ~ # y ,  

in IR 2 where H0 (1) is the Hankel function of order zero and of the 
first kind. Observing that 

where z = x/Ix[, in view of (17) we have to find the kernel g = 
g(. ; () as a solution to the integral equation of the first kind 

i_~ 
/~u~(z ;d )g(d;~)ds (d) -  e ,  e_~kz. ~ x/STek , z E Y2. (19) 

Assume that  g solves equation (19). Then we have that  

/ uS(x;d)g(d;~)ds(d)=~b(x,(), x e l R : \ D .  (20) 

Letting x tend to the boundary and using the boundary condition 
u i + u ~ = 0 on OD we conclude that the Herglotz wave function 

=/s~ g(d;()e~kX'd ds(d), x e IR 2, (21) wi(x) 

is a solution to the interior Dirichlet problem 

Aw i + k~w i = O i n D  (22) 

with boundary condition 

w i + ~ ( . , ~ ) = O  o n 0 D .  (23) 
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Conversely, if the Herglotz wave function (21) solves (22)-(23) 
then its kernel g is a solution of (19). Hence, if a solution g(. ;~) 
to the integral equation (19) of the first kind exists for all points 

E D, then from the boundary condition (23) for the Herglotz 
wave function we conclude that Jig(. ; ~)[]L2(a) ~ oo as the source 
point ~ approaches the boundary OD. 

However, in general, the solution to the interior Dirichlet prob- 
lem (22)-(23) will have an extension as a Herglotz wave function 
across the boundary OD only in very special cases. Hence, the in- 
tegral equation (19) will have a solution only in these special cases. 
Nevertheless, by making use of denseness properties of the Her- 
glotz wave functions, it can be shown (see [2]) that  approximately 
solving a regularized version of the integral equation (19) for 
taken from a sufficiently fine grid in ]R ~ and scanning the values 
for ][g(.; ~)[[L2(a) will yield an approximation for OD through those 
points where the norm of g is large. In general, this approximation 
will not lead to very sharply defined boundary curves. However, if 
necessary these approximations then could be improved by using 
the regularized Newton iteration or the Landweber iteration from 
the previous sections. 

Another method which is related to the method of Colton and 
Kirsch and which also might be utilized for obtaining initial ap- 
proximations without needing a priori information on the obstacle 
has been suggested by Potthast [21]. 
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A b s t r a c t .  The Bayesian approach has been proven to give a common estima- 
tion structure to existing image reconstruction and restoration methods, in spite of 
their apparent diversity (Demoment 1989). The goal of this paper is to investigate 
diffraction tomography within the Bayesian estimation framework. A regularized 
solution to this ill-posed nonlinear inverse problem is defined as the maximum 
a posteriori estimate, introducing prior information on the object to reconstruct. 
Two equivalent formulations of this definition are available which lead to solution 
of a constrained or an unconstrained optimization problem to compute this solu- 
tion. Different existing methods for solving this problem - such as Born Iterative 
Method (Wang and Chew 1989), Newton-Kantorovitch method (Joaehimoviez et al. 
1991), Distorted Born Iterative method (Chew and Wang 1990) and Modified Gra- 
dient method (Kleinman and van den Berg 1992) - are interpreted as algorithms to 
compute the defined solution. This common point of view allows an objective com- 
parison between these methods, from the standpoint of their convergence properties 
and the solution they provide. 

Introduct ion  

Diffraction tomography  consists in constructing an image representing the 
spatial  variation of some physical properties of an inhomogeneous object  
(such as dielectric permit t iv i ty  and conductivity for electro-magnetic waves), 
f rom a finite set of field da ta  scattered by this object. This problem is intrinsi- 
cally ill-posed and a satisfactory solution cannot be obtained f rom imperfect  
da ta  without any introduction of a priori information on the object.  The 
objectives of this paper  are to define a regularized solution to this nonlinear 
inverse problem within the Bayesian est imation f ramework and to interpret  
some of the existing methods to solve this problem as algori thms to compute  
the defined solution. 

First, we briefly present the direct model in a functional and in an al- 
gebraic framework. The algebraic framework allows a compact  presentation 
and notably allows us to perceive strong similarities between some classical 
methods,  which cannot be distinguished in the functional f ramework in which 
they have been proposed. 

Then, we define a regularized solution within the Bayesian est imat ion 
framework. Bayes rule is a consistent way to combine information provided by 
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the data  and prior information on the solution. In this paper, we use Markov 
Random Fields to model this a priori information. We define the solution as 
the maximum a posteriori estimate; so the solution's computat ion requires 
resolution of an optimization problem. 

Then some of the existing methods to solve the diffraction tomography 
problem are interpreted and analyzed as algorithms to compute the defined 
regularized solution. Among these methods are Born Iterative Method (Wang 
and Chew 1989), Newton-Kantorovitch method (Joachimovicz et al. 1991), 
Distorted Born Iterative method (Chew and Wang 1990) and Modified Gra- 
dient method (Kleinman and van den Berg 1992). Three types of methods 
are distinguished: the first considers successive linearizations of the forward 
model, the second defines the solution as the minimum of a joint  criterion 
depending on the object and the field on the object, while methods of the 
third type minimize a criterion which only depends on the object. 

Finally, an objective comparison between these different types of methods 
and the solution they provide is proposed. 

1 P r o b l e m  S t a t e m e n t  

We consider an inhomogeneous 2-D object, embedded in a known homoge- 
neous medium, illuminated with a pure harmonic Transverse Magnetic (TM) 
plane wave. The object is characterized by its complex contrast function 
x(r)  = k2(r) - k~, which is related to the dielectric permit t ivi ty  e(r)  and 
the conductivity ~(r )  of the object by k2(r) = w2#0 (c(r) + jc~(r) /w),  k0 
is the wave number of the background homogeneous medium and r denotes 
a position in lR 2. The direct scattering problem is modeled by the coupled 
integral equations: 

y(ri)  = l l n  ~ ( r i , v ' ) x ( r ' ) ¢ ( r ' ) d r ' ,  r i  6 DM , (1) 
3 3 1 3  0 

¢0(r) + / L  G(r, • Do , (2) ¢(r) 
J d  l J  o 

where y ( r i ) , r i  • DM is the scattered field on a sensor located at r~ in the 
measurement area DM, ¢(r ) ,  r • Do and ¢0 , r  6 Do are the total  and the 
incident field on the object area Do, and ~ is the Green function for the 
homogeneous background medium. 

From an algebraic viewpoint, discretization of (1-2) with a moment  method 
(Howard and Kretzschmar 1986), leads to: 

. = G X¢, (a) 
¢ = ¢0 + G o X ¢  , (4) 

where y C C "M, ¢ • (E "°, ¢0 • C"°, X is a diagonal matr ix  (no × no) with 
the components of the vector x • C "° as diagonal elements, no is the number 
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of pixels of the discrete object and nM is the number of measurement sensors. 
Note that  these notations can be extended for emission from ns different 
positions. 

Formally, the total field ¢ on the object can be expressed from (4) and 
introduced in (3). It gives an explicit relation between the contrast and the 
da ta  y = A(x)  with: 

= ( t  - G o x )  - 1 0 0  (5)  

The inverse problem, which we are concerned with consists in determining 
the contrast x from a given finite set of noisy data  y. Moreover, note that  one 
can have no >> nM× ns (number of unknowns larger than number of data) 
so that  the system of algebraic equations can be highly under-determined. 

2 A B a y e s i a n  A p p r o a c h  f o r  t h e  I n v e r s e  P r o b l e m  

The Bayesian inference is now a common way to handle ill-posed inverse 
problems in signal and image processing (Demoment 1989). We recall the 
main basis of the Bayesian framework before considering its application to 
nonlinear diffraction tomography. 

2.1 G e n e r a l  F r a m e w o r k  

In a general Bayesian framework of parameter estimation from experimental 
data, the relation between the unknown parameters ae E IR n or C n and the 
data  y C ]R m or C ra can be written: 

y = . 4 ( x )  + n , 

where A models the observation mechanism (direct model) and n models 
errors on the measurements (measurement noise as well as modeling and 
discretization errors, which can often be considered additive on the data).  
Without  particular knowledge on the errors, they are usually modeled by zero 
mean white Gaussian random variables, circular in case of complex quanti- 

2 and independent of ae. These assumptions are ties, with known variance a n 
considered hereafter. 

From this modeling, the likelihood function of the unknown x for given 
da ta  y can be deduced: 

( 1 ) m  ( 1 ~ ) 
p(y Ix) - - - -  e x p - ~ l l u -   4( )112 

The a priori state of knowledge, that  is before any measurement is carried 
out, is taken into account through a probability law: 

p(x )  c,: exp { -pU(x)}  , 
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where U has to be chosen to enforce desired properties on the solution. 
Bayes rule allows to combine information supplied by the da ta  and prior 

model in the a posteriori probabil i ty law of the parameters:  

p ( ~  lu )  - p ( u l ~ ) v ( ~ )  
p ( u )  

where, p(y) is a normalizing coefficient. 

From a strictly Bayesian viewpoint, the posterior law is the solution to 
the problem as it sums up all information available on the object.  However, 
it is necessary to decide on a value to give to x. Different es t imators  can be 
exhibited following the chosen decision rule, such as M a x i m u m  a posteriori  
(MAP), Max imum Marginal a posteriori (MMAP) or Posterior Mean (PM) 
estimators.  Parameters  which maximize the a posteriori law (MAP) are fre- 
quently chosen and this leads to an opt imizat ion problem. Indeed, the MAP 
est imate corresponds to the minimizer of the criterion: 

Y ( ~ )  = Ily - A(~)II  ~ + ~ u ( ~ )  , 

where A = c ~  can be considered as a regularization pa ramete r  which bal- 
ances between fidelity to the da ta  and prior information.  

2.2 A p p l i c a t i o n  to N o n l i n e a r  Dif fract ion T o m o g r a p h y  

This general framework can be applied on many  ways to the considered prob- 
lem. We propose hereafter two distinct formulations,  depending on whether 
the contrast  x has to be est imated from the da ta  y or both  the contrast  
and the field ¢ on the object have to be est imated.  

First F o r m u l a t i o n :  E s t i m a t i o n  of  x. This formulat ion is straightfor- 
ward. The solution is defined as the MAP est imate of x: 

~,,,p = arg m ~ x p ( ~  I u)  • 

From the explicit relation (5) it corresponds to the global minimizer of the 
criterion 

JMAP(~) = llY - -a(x)li ~ + AU(~) , (6) 

with 

. a ( ~ )  = C ~ X ( I  - C o X ) - % o  . 
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S e c o n d  F o r m u l a t i o n :  J o i n t  E s t i m a t i o n  o f  ~ a n d  ¢.  The solution is 
defined as the joint MAP estimate of x and ¢: 

(~, ¢)MAP = arg m a x  p ( ~ ,  ¢ I u )  • 
(~,¢) 

Thanks to Bayes rule, the a posteriori law can be written: 

P(z,  e l Y )  = P(Y I x '  ¢ )P (¢  I z)P(X) p(u) (7) 

In this relation, p(y) is a constant with respect to x and ¢,  so only the three 
numerator  terms intervene in the MAP criterion: 

- Using (3), with the considered error model, the first term can be written: 

P(Y I :~, ¢) o~ exp {---~bb IIY -- GMX¢"2 } ; 

-- The second term corresponds to the probability law of ¢ for a known ~. 
As ¢ is the total field on the object, it is uniquely determined for a given 
x by (4). Thus, if 5 denotes the Dirac distribution: 

p ( ¢  I ~ )  -- 5 ( ¢  - ¢0  - G o X ¢ )  ; 

- p(z)  corresponds to the prior model on the object: p(x) o( exp { - p U ( ~ ) } .  

Using these expressions, the posterior probability law can be written: 

p ( : e , ¢ , y )  oc exp (--~b l[y -- GMX¢,,2 -- #Ll(x) } 5(¢ -- ¢o -- G o X ¢  ) • 

The MAP estimate of (x, ¢) corresponds to the maximum of p(x,  elY), 
i.e. it minimizes the criterion: 

j :AP(~,  ¢) = IlY -- G~X¢I I  2 + ~U(~) , (S) 

subject to the constraint: 

¢ - ¢ 0 - G o X ¢ = 0  . (9) 
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2.3 P r i o r  M o d e l s  

Introduction of a priori information on the object is the basis of regulariza- 
tion. In the Bayesian framework, this information is modeled by a probabili ty 
law p(x)  or by an energy function H(x) .  

We consider the class of Markov Random Fields (MRF) models, which 
is frequently used in image processing (Geman 1990) and allows the intro- 
duction of local correlations between the elements of an image. The energy 
function of a MRF can generally be written: 

i i~j  

with p( t )  a p o t e n t i a l  function, and i ,~ j stands for neighbors pixets i and 
j. Note that  for complex fields, p operate separately on real and imaginary 
parts of x if they are considered independent. 

A large choice of such potential functions has been proposed in the liter- 
ature and certain of them are summarized in Table 1 and represented Fig. 1. 

Table 1. Some potential functions and their characteristics 

N a m e  

L2 norm, Gaussian 
L1 norm, Laplacian 
Lp n o r m  

Hubert function 

Truncated Quadratic p( t ) = 

Potential function 
p(t) = t 2 

p(t) = It] 
p(t) = Itl p, 1 < p < 2 

I if Itl _< 1 
K t ) =  ~tllt~-I if I t l_>l 

It[ 2if It[ < 1 
1 if Itl > 1 

Characteristics 
strictly convex, scale invariant 
convex, scale invariant 
strictly convex, scale invariant 

c o n v e x  

non convex, implicit line process 

The L2 norm corresponds to a first order Tikhonov regularization. This 
kind of regularization is of significant interest when the relation between the 
unknown and the data  is linear because a linear explicit relation between the 
MAP estimate and the data  is then available: 

X~Ap = ( A t  A + A W ) - I A t y  , 

with W -1 the correlation matr ix  of the Gaussian process. However, such 
interest decreases for nonlinear direct models, unless linear approximations 
are considered. 

Nonconvex potential functions, like the truncated quadratic or other mod- 
els including implicit or explicit line processes, can improve considerably the 
reconstruction of piecewise continuous images (Kfinsch 1994). However, as 
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local min ima  may  appear  in the energy function, choosing such a model gen- 
erally largely increases the difficulty of comput ing the solution. 

Convex potential  functions, such as Lp norms or Huber t  function, s e e m  
to be a reasonable choice for nonlinear inverse problems. They correspond to 
a compromise between L2 norm and nonconvex functions, as large variat ions 
of the field are less penalized than for the L2 norm, but more than  noncon- 
vex functions. Using such models, allows bet ter  reconstructions of piecewise 
continuous images than Tikhonov regularization with no difficulty increase 
of the solution computat ion.  

x '. .. / / /  

o.s "~. . ¢ '  

0' ....... % .... 
- 2  -1 .5  -1 -0 .5  0 0.5 1 1.5 

Fig. 1. 1-D representation of some potential functions: L2 ( - ) ;  Lt ( - - ) ;  
Lp, p = 1.3 ( - . ) ;  Huber function, T = 1 (...); Truncated Quadratic T = 1(..). 

2.4 A C o m p u t a t i o n a l  C h a l l e n g e  

The regularized solution has been defined as the contrast  m which minimizes 
criterion (6) or as the contrast  m and the total  field ¢ that  jointly minimize 
criterion (8) under constraint (9). These two distinct formulat ions are equiv- 
Ment in the sense that  they define the same solution (for m), but  one m a y  
consider using different techniques to solve them. 

Note that  the Bayesian framework is not indispensable for defining the 
solution as the min imum of the criterion (6). Indeed, this criterion can be 
considered as a penalized least square criterion within a determinist ic frame- 
work. However, the definition of the joint solution as the min imum of (8) 
under constraint (9) is not straightforward f rom determinist ic arguments  and 
other joint criteria are often proposed, which will be studied in § 4. Anyway, 
the Bayesian framework is not only useful to define a regularized solution to 
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an inverse problem but also offers probabilistic tools e.g. to characterize the 
solution (Tarantola 1987) and to estimate some additional parameters  such 
as the regularization parameter  (Idier et al. 1996). 

Due to the non-linearity of the direct problem, it is easy to show that  the 
criteria (6) and (8) are not convex functions. Thus, even if the prior informa- 
tion is modeled with a convex energy function, the criteria may have local 
minima. From simulation experiments, appearance of local minima is closely 
linked to a high contrast value, a limited number of measurements and a low 
signal-to-noise ratio. Thus computat ion of the solution may be a cumbersome 
task, especially in these difficult configurations. However, the problem seems 
to be less difficult in more favorable configurations. 

In the multiplicity of methods proposed for solving nonlinear diffraction 
tomography problems, we tried to establish a classification, even if not ex- 
haustive. Three types of methods have been emphasized which can be inter- 
preted and analyzed in terms of algorithms to compute the defined regularized 
solution. 

3 S u c c e s s i v e  L i n e a r i z a t i o n s  

Methods of the first type consider iteratively linear approximations of the 
direct model, which leads to solve successively linear inverse problems. Dif- 
ferent methods of this type have been proposed in the l i terature to solve 
the nonlinear inverse problem of diffraction tomography. As the nonlinear 
inverse problem is ill-posed, each linear inverse problem is ill-posed and reg- 
ularization has often been introduced to stabilize the solution of each linear 
problem. 

Before comparing these different methods, we propose a successive lin- 
earizations algorithm specifically designed to minimize the criterion (6). Fi- 
nally, we study the convergence properties of such techniques. 

3.1 A S u c c e s s i v e  L i n e a r i z a t i o n s  A l g o r i t h m  t o  M i n i m i z e  ,2 ~MAP 

At a given iteration n, a linear approximation of `4 has to be taken into 
account for x near x . .  The theoretically most coherent linear approximation 
of `4(~) near x .  is given by its first order Taylor series expansion: 

A ( ~ )  = A(~,~) + V ~ A ( ~ ) ( ~  - ~ )  + 0 ( (~ - ~,~)~) 

(strictly speaking, one has to account for the Taylor series expansion of the 
real and imaginary parts of .4 to define such a relation for complex valued 
functions). Let A~  MAP = V~.4(~,~), calculus of n sLMAp can be done easily. If 
(~n = ( I  - G o X n ) - l ¢ o  denotes the field on the object for contrast  xn, and 
• ~ its corresponding diagonal matrix,  A sLMAP can be written: 

A~ MAp : a M [I '-}- X n ( I -  G o X n ) - I G o ]  ~)rt • 
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Thus minimizat ion of ~MAF c a n  be performed with successive lineariza- 
tions of A: 

Initialize n = 0 ,  ~ 0 .  

I terate for n -- 1, 2 . . .  until convergence towards a s ta t ionary point: 

1. Compute  the field on the object ¢~ and the mat r ix  A sLMAP corresponding 
to the linear approximat ion of ,4 near the current solution ~ .  

2. Compute  ~ + 1  = argminJSLMAP(~) with 
x 

= - - - -  = )11 = + 

Note that  in such a scheme, for convex energy functions U, all these 
criteria are convex functions and consequently have a unique global min imum.  

3.2 T h e  B o r n  I t e r a t i v e  M e t h o d  

The Born Iterative Method (BIM) has been introduced to circumvent the 
nonqinearity,  solving iteratively each of the coupled equations (1-2) (Wang 
and Chew 1989). Indeed, both  integral equations are bilinear with respect to 
x and ¢ and solving each equation with respect to one of these variables leads 
to solution of linear equations. Using algebraic notations,  the BIM scheme 
can be summarized:  

Initialize Cn = ¢0 (Born approximation) .  
I terate  for n = 1 , 2 . . .  until convergence towards a s ta t ionary point: 

1. Compute  x~+l for field ¢~ on the object, i.e. solve the linear inverse 
problem: y = GM~n~. 

2. Compute  the total  field on the object ¢,~+1, corresponding to contrast  

a g n + l  • 

The linear approximat ion of the direct model which is accounted for in 
step 1. can be written: 

.A(~) ~ . A ( ~ )  + A~M(~ -- ~ ) ,  with A~ TM = G M ~  • 

SLMAP BIM It  appears  in calculus of A m , that  A m corresponds to take a zero order 

approximation,  with respect to 5~, of [I  - Go(X,~ + 5X)] -1 . This  t e rm is 
approximated  by [ I -  GoX~]-I so tha t  the approximat ion  of the BIM is 
coarser than the approximat ion of the SLMAP. 

In (Wang and Chew 1989), the linear inverse problem of step 1. is solved 
using a zero order Tikhonov regularization on ~. Hence, the original BIM is 
equivalent to the SLMAP where A~  MAP is replaced by AEn TM , with H(m) = Ila~ll 2 
and x = 0 is taken as initial solution. 
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3.3 T h e  D i s t o r t e d  B o r n  I t e r a t i v e  M e t h o d  

The Distorted Born Iterative Method (DBIM) (Chew and Wang 1990) is 
based on a scheme similar to the BIM, using distorted wave Born approx- 
imations. At each iteration, a known inhomogeneous background medium 
with contrast a~n is considered, with corresponding Green function gn and 
incident field On, and an additional inhomogeneity 5x has to be computed.  

Hereafter, 0o,  ¢M denote the field On on the object and on the measure- 
ment points respectively, G M denotes a matr ix  corresponding to discretization 
of the Green function for inhomogeneous medium ran. The DBIM scheme can 
then be summarized: 

Initialize a~0 = 0, G~ = GM and the incident fields ¢2 = ¢o,  CM = ¢0M 
(Born approximation).  
Iterate for n ---- 1, 2 . . .  until convergence towards a stat ionary point: 

1. Compute contrast m.+l = m n  + 6m for the distorted wave Born approx- 
imation (field on the object ¢o and matr ix  ~ ) ,  i.e. solve the linear 

n n inverse problem: y + ¢° M = ¢o + GM~liO~a~" 
2. Compute incident fields ¢o +t, ¢~+t and matr ix  GM +l corresponding to 

the new inhomogeneous background a~n+i. 

If discretization is performed with a moment  method with pulse basis and 
test functions, as suggested in (Chew and Wang 1990), the update  of ~'M can 
be written: 

G~ = GM + G M X n G o  . 

Note that  this algebraic relation is not valid for other basis and test functions 
such as piecewise continuous ones, in which case the study of the DBIM in an 
algebraic framework is not as easy. Using algebraic notations, it can be shown 
that,  at each iteration, the first step accounts for a linear approximation of 
,4 which can be written: 

A(m) ~-, c4(mn) + AVnB~M(m-- mn) , with AvnBIM = G M ( I -  X n G o ) - i ~ n  . 

It can be shown that  the approximation of the DBIM is identical to tha t  of 
the SLMAP. Indeed, 

( I -  X,~Go) -1 = I + X n ( I -  G o X n ) - l G o  , 

which can be verified by calculating the product of these matrices. 
In (Chew and Wang 1990), zero order Tikhonov regularization on 5a~ has 

been introduced to solve the linear inverse problem of step 1, i.e. it accounts 
for an energy function/d(a~ - m~) instead of/d(a~) in the SLMAP scheme. 
Thus the solution given by this method does not correspond to a minimum 
of the MAP criterion (6). 
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3.4 T h e  N e w t o n  K a n t o r o v i t c h  M e t h o d  

The BIM and the DBIM are specific to the modeling of the forward problem 
with coupled equations such as (2-1). The Newton-Kantoroviteh method is a 
more general method to solve nonlinear functional equations y = A ( x )  (Roger 
1981). An iterative scheme is introduced, whose iteration consists in calcu- 
lating variation 5x added to x,~ so that  y - A(x,~) = A ( x n  + 5x).  As 5x is 
assumed to be small, .A(x,~ + 5x) is linearized for each iteration. 

A Newton-Kantorovitch Method (NKM) has been proposed to solve the 
problem concerned (Joachimovicz et al. 1991). The linear approximation taken 
into account in (Joachimovicz et al. 1991) can be written: 

.A(x) ~ .A(~n) + ANnXM(:e -- ~,~) , with ANn TM = GM(I  -- X n G o ) - l ~ n  , 

which is strictly equivalent to that  of the DBIM. Let us recall that  this 
relation can be established for the DBIM when the discretization is performed 
with a moment  method with pulse basis and test functions, while it is still 
valid for other functions for the NKM. 

In (Joachimovicz et al. 1991), the solution of each linear inverse problem 
is computed using zero order Tikhonov regularization on 5x. Thus the DBIM 
and the NKM are strictly equivalent. 

3.5 I n t e r p r e t a t i o n  a n d  Ana ly s i s  o f  t h e  S o l u t i o n s  

In terms of linear approximations, the SLMAP, the DBIM and the NKM are 
strictly equivalent, while the BIM accounts for a coarser approximation of A 
at each iteration. 

The DBIM and the NKM are identical and only differ the from the 
SLMAP on the way according to which the regularization is introduced. In- 
deed, in the DBIM and the NKM, regularization is introduced to stabilize the 
solution of each linear inverse problem and not to regularize the whole nonlin- 
ear inverse problem. Regularization is performed on (%~ and does not take into 
account any prior model on m ; so the provided solution does not correspond 
to a minimum of j~AP. Note that for such a regularization, the Mgorithms 
seem to be very sensitive to the regularization parameter.  In (Joachimovicz 
et al. 1991) a specific adjusting method has been proposed for this parameter  
in the NKM. In (Chew and Wang 1990) it has been observed that  the DBIM 
can diverge more easily than the BIM. It seems to be contradictory with 
the fact that  the BIM accounts for a coarser approximation of .4 than the 
DBIM, but  it can be easily understood from the fact tha t  the DBIM does not 
regularize the nonlinear inverse problem satisfactorily but each linear inverse 
problem independently. 

On the other hand, the SLMAP is a successive linearizations algorithm 
designed to compute a regularized solution to the nonlinear inverse problem, 
defined as the minimum of ,]~AP. 
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The properties of the SLMAP in terms of minimizat ion of fl~AP can be 
studied. At each step, ,7 MAP is approximated  by a convex criterion flSLMAP 
with same value at x~ and - due to the first order Taylor series expansion - 
same slope at this point: 

JS~MAP(w~) = ,TM*P(x,) and V~,TSLMAP(x~) = V~,TM*P(x,~) . 

The properties of such an algori thm are: 

1. There exists no convergence guarantee and the algori thm could diverge. 
2. If  it converges, a s tat ionary point 200 is reached and 

so this point corresponds to a local min imum of the criterion jMAP 
3. Possible convergence and reached s ta t ionary point depend upon the ini- 

tialization of the algorithm. 

Note tha t  the second property is not valid for the linear approximat ion  taken 
into account in the BIM. If  the BIM converges towards a s ta t ionary point,  
this point is not guaranteed to be a min imum of jMAP because ~7~J~ TM ($~) ¢ 
~7~,TMAP(~n). In this sense, the BIM is sub-opt imal  compared to the SLMAP 
(moreover, the SLMAP has been shown to converge more rapidly than  the 
BIM (Carfantan and Djafari 1996)). 

4 M i n i m i z a t i o n  o f  a J o i n t  C r i t e r i o n  

Some recently proposed methods - methods of the s e c o n d  t y p e  - define the 
solution as the min imum of criteria which account for errors on both cou- 
pled equations (3-4) with possible additional terms (Kleinman and van den 
Berg 1992), (Sabbagh and Lautzenheiser 1993), (Caorsi et al. 1993). In these 
methods,  the solution is defined as the minimizer of a criterion, joint ly  on 
the contrast  ~ and the field on the object 0,  with the following generic form: 

F ( x ,  0) = aM I[Y - GMX¢[[ 2 + ao [[¢ -- ¢0 -- G o X ¢ ] [  2 + Ml(x ,  ¢)  . (10) 

Such a criterion is very easy to understand intuitively: it corresponds to 
minimizing jointly the errors on (3) and (4) and, as the problem is ill-posed, 
a penalization te rm on the unknowns is added to regularize it. 

The  proposed methods differ on several points: 

- Cri teria differ from value of parameters  aM and ao. For example,  these 
parameters  are fixed to normalize the errors on both  equations for ¢ ---- 0: 
ao = 1/11¢0112 and aM = 1/llyll ~ in (Kleinman and van den Berg 1992), 
while they are fixed to 1/2 in (Sabbagh and Lautzenheiser 1993). 
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- There are differences on the regularization term. Originally, no regular- 
ization was introduced (Kleinman and van den Berg 1992), (Sabbagh and 
Lautzenheiser 1993). Then, it has been proposed to regularize both on 
x and (#, with H(x ,  ¢) = A~[[~ll 2 + A+[lqgll 2 in (Barkeshli and Lautzen- 
heizer 1994) and with/ / (a: ,  ¢) = A¢IIAI¢ + ( X  + k02I)¢ll 2 + AzIIDI~II 2 
in (Caorsi et al. 1993), where A1 and D1 corresponds to discretization 
of Laplacian and gradient operators. Finally, it has been proposed to in- 
troduce a single regularization term on x, corresponding to a Markov 
random field with a line process in (Caorsi et al. 1995), and to a total  
variation penalization in (van den Berg and Kleinman 1995), which is 
equivalent to a L1 regularization term. 

- The methods also differ from the techniques used to compute the solution. 
Usual gradient type local minimization techniques has been used (Sabbagh 
and Lautzenheiser 1993), (Barkeshli and Lautzenheizer 1994) as well as 
local techniques specially designed for such a criterion (Kleinman and 
van den Berg 1992) and global minimization techniques such as Simu- 
lated Annealing (Caorsi et al. 1995). 

4.1 B a y e s i a n  I n t e r p r e t a t i o n  

Recall that  joint estimation of x and 4, leads to problem Pc: minimization 
of criterion (8) subject to constraint (9). The constraint can be equivalently 
written Ikb - ¢0 - G o X ¢ I I  2 -= O, so that  the Lagrangian of Pc can be written: 

¢ o ,  = llu - G ,xCll + II¢ - ¢ o  - G o X C J l  + (11) 

with the scalar Lagrange multiplier p. This Lagrangian looks like generic 
criterion (10), so that the adopted Bayesian framework gives a new way 
to look at it. It corresponds to the Lagrangian of the constraint optimiza- 
tion problems :Pc in which the Lagrange multiplier is fixed intuitively (# = 
Hyll2/l[qS0i[ 2 (Kleinman and van den Berg 1992) or # = 1 (Sabbagh and 
Lautzenheiser 1993)). 

Moreover, this viewpoint gives indications for regularizing such a criterion 
with an energy func t ion / / (~) .  Using Bayes rule for the considered model of 
errors on measurements, we can see on (7) that  there is no need to introduce 
prior model on q9. 

Note that  in (Caorsi et al. 1995) another Bayesian interpretation has been 
given for this criterion. It is shown that  if additive gaussian error are assumed 
on both coupled equations (3-4), the joint MAP estimate of x and ¢ mini- 
mizes a criterion of form (10). However, it can be shown that  such a criterion 
is obtained introducing zero mean circular Gaussian (conditionally to x) noise 

with covariance matrix CM = ~r~I + 0" 5 [(GMX)t(GMX)] -t on the measure- 
ments. It seems to be a very strong and unjustified hypothesis as it considers 
a particular correlation between the measurement errors and the unknown 
object. 
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4.2 Analysis  of  the Solutions 

The Lagrangian theory provides a link between solutions of constrained opti- 
mization problems and saddle-point of the corresponding Lagrangian. How- 
ever, in the considered case where neither the criterion nor the constraint are 
convex, the only available property is the following: 
If  ((~, ¢),  #) is a saddle-point of Lagrangian (11), (~, ¢) is a solution to con- 
strained optimization problem 7)c. 
However, there is no guarantee that  such a saddle-point exists. 

Among the different methods proposed to minimize a criterion of form (10), 
none tries to reach a possible saddle-point of Lagrangian (11), but  only a 
minimum of it for a fixed value of Lagrange multiplier. The given solution 
is then not necessarily a solution of 7'c. Moreover, note tha t  criterion (10) is 
not convex, so it can have local minima. The solution computed with local 
minimization techniques will then possibly correspond to a local minimum of 
the Lagrangian, for fixed Lagrange parameters.  

It is possible that  the given solution corresponds to a saddle-point of the 
Lagrangian. If the fixed Lagrange multiplier corresponds to a max imum of 
the Lagrangian, the solution is solution of :Pc. It can be shown that  if (~, ¢) 
is a local minimum of L, for /z fixed and that  constraint is verified, then 
corresponds to a local extremum of the unconstrained criterion ,7 MAP. But  
if the constraint (9) is not verified, the solution cannot be characterized as 
easily. 

Note that  from this definition of the joint solution as the solution of 
~oc, specific algorithms can be designed to compute this solution (Carfantan 
1996). 

5 M i n i m i z a t i o n  o f  t h e  M A P  C r i t e r i o n  

From presentation of § 2, a natural  idea to compute the defined solution - 
which corresponds to methods of the third type - is to minimize directly the 
MAP criterion (6). 

Different methods have been proposed in the literature which define the 
solution as the minimizer of the mean square error (MSE) between exper- 
imental and simulated data, possibly taking into account a regularization 
penalty term (e.g. (Garnero et al. 1991), (Xia et al. 1994)). However, an ex- 
plicit formulation of criterion (6) using the explicit algebraic relation ( 5 ) o f A  
has only been proposed recently (Carfantan and Djafari 1995). Note that  it is 
not necessary to express such a relation to try to minimize the MSE and it is 
sufficient to be able to simulate the forward problem. However, one can take 
advantage of such an expression to design specific algorithms to minimize 
this MSE and the criterion (6). 

Different optimization techniques have been used to compute the mini- 
mum of this criterion and will not be detailed hereafter: local techniques such 
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as conjugate gradient (Xia et al. 1994), (Lobel et al. 1996) or global ones such 
as Simulated Annealing (SA) (Garnero et al. 1991), Graduated non Convex- 
ity (GNC) (Carfantan and Djafari 1995), or a cheaper Iterative Conditional 
Mode (ICM) (Carfantan et al 1996). 

Using any optimization technique to minimize ~7 MAP guarantees the solu- 
tion to be a minimum, possibly local, of this criterion. However, in difficult 
configurations, when this criterion has local minima, a global minimization 
technique may be used to obtain a satisfactory solution. 

6 A C o m p a r a t i v e  S t u d y  

The presented classification of existing methods allows to better compare 
them. One can study the number of considered unknowns, the computation 
cost, the convergence properties and the robustness with respect to some 
parameters for each type of methods. No simulation results are shown in this 
paper and the reader can refer to (Carfantan 1996), (Carfantan and Djafari 
1996) for more details. The main conclusions of this study is presented in the 
following. 

6.1 N u m b e r  of  U nknown  

In methods of both first and third types, the unknown is the contrast x E C '~° 
while in methods of second type, the contrast and the total field on the 
object for each incident field ¢ E C ~°×~s have to be reconstructed. So, if the 
number of data is increased, considering more source positions, the number 
of unknowns is increased as well in methods of the second type. 

6.2 C o m p u t a t i o n a l  Costs 

In methods of the first type, evaluation of the criterion requires an order 
of O ( n  O *nM * ns)  complex operations. However, these methods require the 
update of some matrices between each iteration which includes resolution 
of the direct problem. For the BIM, the cost of these updates is of order 
60(no 3 + no  2 * ns  + nonMns) while it is of order O(no 3 + no 2 * (ns +nM)) for 
the SLMAP, the DBIM and the NKM. 

The methods of the second type do not need any updates and evaluation 
of the criterion has a cost of order O (no 2 ns + no * ns * riM) complex operations. 

On the other hand, the third type methods require evaluations of crite- 
rion (6) whose computation order is O(no 3 + no2ns + no *nM * ns). Indeed, 
for each evaluation of the criterion, the direct problem has to be solved. For- 
tunately, algorithm such as SA (Garnero et al. 1991) and ICM (Carfantan et 
al 1996), which update the contrast image pixel by pixel, can perform these 
updates without computing the whole criterion for each pixel but only once 
for the sweep of the whole image. 
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6.3 C o n v e r g e n c e  P r o p e r t i e s  

We already studied the convergence properties of each type of method which 
can be summarized as follows. Methods of the first type, such as the SLMAP, 
can diverge while the others are guaranteed to converge towards a s tat ionary 
point. On the other hand when the SLMAP converges, the provided solution 
corresponds to a local minimum of the MAP criterion (6) (which is not true 
for the BIM, the DBIM and the NKM). Methods of the second type are guar- 
anteed to converge towards a minimum, maybe local, of the criterion (10). 
This solution can correspond to the MAP estimate only if the constraint (9) is 
satisfied, which is not guaranteed by these methods. The third type methods 
are guaranteed to converge towards a minimum, possibly local, of flMAP. 

6.4 R o b u s t n e s s  w i t h  R e s p e c t  t o  t h e  R e g u l a r i z a t i o n  P a r a m e t e r  

It has been experimentally established that  methods of the second and third 
types are more robust with respect to the value of the regularization parame- 
ter ,k (Carfantan 1996) than first type methods. For example, methods of the 
first type can give good results for a value of ,k and diverge for a nearby value, 
while the second and third types methods are in general not very sensitive to 
a change of a factor ten of this parameter,  on the same configuration. This is 
an important  point to consider as no automatic  adjustment of this parameter  
is available up to now, only the user's experience. 

7 C o n c l u s i o n  

In this paper, we have studied diffraction tomography within the Bayesian 
estimation framework. It allows to consistently introduce prior information 
on the solution of this nonlinear ill-posed inverse problem and to define a 
regularized solution, the MAP estimate, with reasonable assumptions. 

Different existing methods have been classified in terms of algorithms to 
compute the MAP estimate. Three types of methods have been distinguished. 
Methods of the first type correspond to successively approximating the non- 
linear ob jec t /da ta  relation with a linear one. Methods of the second type 
define the solution as the joint minimizer of a criterion depending on the 
object and on the total field on the object. Third type methods directly min- 
imize the MAP criterion depending on the object. These methods have been 
compared on their convergence properties and on the solution they provide. 

Three major  key ideas can be emphasized: 

- As regularization consists in introducing prior information on the solu- 
tion, one can get benefits from introducing more advanced models than 
a simple L2 (Tikhonov) one. 
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- A successive linearizations a lgor i thm has been proposed to c o m p u t e  a 
regularized solution to this nonl inear  inverse problem.  It  is bo th  nlore 
efficient than  the BIM for its linear approx ima t ion  and than  the N K M  
and the DBIM from a regularizat ion s tandpoin t .  

- The  solution given by the min imiza t ion  of  the (penalized) joint  cri terion 
does not  correspond to the m i n i m u m  of the (penalized) mean  square error 
on the measurement .  
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1 I n t r o d u c t i o n  

In this paper we propose a method for solving the inverse scattering problem for the Helmholtz 
equation. The nonlinear problem is separated into an ill-posed linear and a, hopefully, well-posed 
nonlinear problem. This technique is successfully applied by several authors, see for example Lan- 
genberg, [6], Pichot et al [18]. What  is special with the proposed method here is the application of 
the  approximate inverse introduced in [10] in order to precompute a reconstruction kernel in order 
to speed up the solution both of the linear and the nonlinear problem. 
For applications of the elastic or electromagnetic inverse scattering problem in medical imaging or 
nondestructive testing see for example [3], [6], [9], [15], [17]. For the sake of simplicity we restrict  
our presentation here to the scalar case. In principle it is also applicable to the vector-valued case. 
For fixed wavelength k and incoming plane wave in direction O E S 2 the Lippmann-Schwinger  
equation serves as mathematical model. It is 

u ' ( O ,  ~) = f a ( ~ ,  - x l ) u ( O  , x ) f ( x ) d x  (1) 

with the complex permittivity f and Green's function G. Equation (1) is valid both  inside the  
object  and outside. Hence, in a first step, we approximate the product  • = u f ,  which now is the 
solution of a linear problem. This equation is well studied, see for example [3]. Evaluating the 
r igh t -hand side for ~ inside the object with the approximated ~ = u f  results in an approximation 
for the scattered field u s inside the body. Finally, dividing • by u i + u 8 gives an approximation for 
the  searched-for permittivity f .  
The first part  of this paper consists in describing an efficient method for solving the linear par t  by 
constructing a reconstruction kernel ¢ ,  such that  the solution • is represented as a scalar product  
of the kernel ¢ with the data, here u s. 

• (~) = (u s, ~ z ) .  (2) 

We point out that  no artificial discretization is needed. Hence we study operator  equations AO = g 
for operators between Hilbert spaces X and Y. Approximate inverse means a solution operator  
which maps the data g = u s to a stable approximation of the solution of the ill - posed problem 
A~5 = g. This inversion operator is precomputed without using the  data  9, see [10]. 
The method is based on two ideas. First, the computation of moments  of the solution is stable; 
i.e., we compute instead of ¢ the approximation (~, e~) with a suitable mollifier e~ reducing in 
tha t  way the high frequency components in the solution which are mostly affected by the da ta  
noise. This can be reformulated as using a weaker topology in the space X ,  see [4], [8]. Examples 
for e~ are given in the next section, e~ can be a basis function for projection methods,  it can be 
chosen such that  {¢, e~) approximates a derivative of ¢; in wavelet language it can be a scaling 
function or a wavelet. Second, in the case of linear operators the computat ion of (~, e~) is then 
achieved by approximating e~ in the range of the adjoint operator  A* by the reconstruction kernel 
¢~ : A*¢~ "" e~. Then 
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This  is the  mollifier method  presented in [12]. It  also has  been used to accelerate convergence for 
finite e lement  solutions in [7]. The recently introduced method  in smoothed  particle hyd rodynamics  
is based on the  same ideas. Wi thou t  using the  possibility of precomput ing  a recons t ruc t ion  kernel 
via the  adjoint  operator  a mollification method  is presented in Murio [13]. 
The  rest  of the  paper  is then  devoted to the above mentioned application in inverse scat ter ing.  

2 A p p r o x i m a t e  I n v e r s e  F o r  L i n e a r  P r o b l e m s  

In the  following we assume A to be a linear, continuous operator  between the  Hilbert  spaces X 
and Y. Especially we th ink of X as a space of functions and I t as a finite d imensional  space of 
measurements .  Hence, if necessary, we use X = L~(~)  for a suitable set /2 C K~ d. Examples  for 
mollifiers are d 

e~(x, y) - vol(Sg_l)V a X.r(x - y) (3) 

where X~ is the  characterist ic function of the  ball around 0 with radius  7 and  vol(S a - l )  is the  
measure  of the  surface of the  uni t  ball in ~ d .  Here local averages of the  solut ion axe computed .  
Wi th  the  band  limiting filter 

e.y(x, y) = ( ~ ) dsinc("/(x -- y) ) (4) 

the  high - frequency components  in the solution are eliminated. Fast  decaying is the  kernel of the  
heat  equat ion 

e~(x, y) = (27r)-d/2"/-d exp(--Ix -- yl~/(2V2)) . (5) 

In all cases the  parameter  V acts as a regularization parameter .  The  mollifier e~. is no t  necessari ly 
a funct ion with mean  value 1. When  the essential information we need are discontinuit ies  in 4~ we 
can use as e~ a function such tha t  (£5, e.~(x, .)) approximates  a derivative of ~(x) .  This  m e a n s  t ha t  
e~ can also be a wavelet, see e.g. [13]. 
First  we a s s u m e  the equation A*¢~ = e~ to be solvable. Then  we put  

(~, e~) = (~, A*¢~) = (A¢, ¢~.) = (g, ¢~) =:  S.yg.  (6) 

This  is the  technique to derive inversion formulas in x - ray computer  t omography  resul t ing in 
the  so - called filtered backprojection methods,  see e.g. [8], [15]. If the  equat ion A*¢~. = e~ is 
not  solvable we approximate  ¢~ by minimizing the  defect HA*¢~ - e~l I for sufficiently s m o o t h  e~ 
leading to the  equat ion 

AA*¢~ = Ae:~ . (7) 

T h e n  we get  
(~, e~) = (~, ,4"¢~) = (A~,¢~)  = (g,¢~) =:  S,yg.  

It is impor tan t  to ment ion tha t  no artificial discretization of ~5 is needed as in t roduced by project ion 
methods ,  see e.g. [8], [15], [16]. For the  numerical  computa t ion  of ¢~ the  ma t r ix  AA* needs a coarse 
stabilization, the  fine tun ing  is then  achieved by the  choice of V, compare  [19]. 

3 C o m p a r i s o n  W i t h  O t h e r  M e t h o d s  

Now let A be a compact  operator  between the Hilbert spaces X and Y. T h e n  it has  a s ingular  
value decomposi t ion 

{Vn,Un;On}~ 
where vn, un  are normalized and 

Avn = anu,~ and A*un = anvn . 

Regular izat ion methods ,  like Tikhonov - Phillips, t runca ted  s ingular  value decomposi t ion  or Landwe- 
ber i terat ion,  have the  form 

T~g = ~ F~ ( a n ) a ; '  (g, u n ) v ,  , (8) 
n 

see for example  [2], [5], [8]. The  following result shows tha t  these me thods  are special cases of the  
approximate  inverse. 
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T h e o r e m  1 Let the regularization method T, r in (6) be given with a filter F- r. Then this method 
can be written as an approximate inverse with mollifier 

e~ (x, y) = E F~ (an)v ,  ( x ) v ,  (y) . (9) 
n 

Proof: The definition of ¢~ as solution of AA*¢~  = Ae~ in (5) leads with 

n 

to 

Then 

n 

In contrast  to the Backus - Gilbert method, see [1], [19], the matr ix  for computing the reconstruc- 
tion kernel does not depend on the reconstruction point. Also there is a the possibility to pa t tern  
the reconstruction kernel in almost any desirable way, one is not  forced to approximate the  delta 
distribution with a kernel like [x - y[-2. 

Using the smoothing property of the operator E ,  defined as E,d~(x) = (~, e~(x, .) we can extend 
the concept of order optimality from the classical regularization methods,  see [11]. 

4 E f f i c i e n t  I m p l e m e n t a t i o n  

If the problem shares some invariance properties they can be used for a fast realisation of the 
method.  Let in the following E~ be a function of the variable y only. We can think of E~(y)  = 
%(0, y); i.e., a mollifier concentrated around 0 which then may be shifted to arbitrary points as 
e ~ ( x , y )  = E ~ ( x  - y ) .  

T h e o r e m  2 Let A : X --~ Y and let T~ be a group representation on X and T~, T~ be group 
representations on Y such that 

AT~ = T~ A (10) 

and 
T~AA" = AA*T~ . (11) 

Let w~ be the min imum norm solution of 

AA*w~ = A E ,  . (12) 

Then the min imum norm solution of 

is 

AA*~b~(x) = AT~ E~ 

Proof : LFrom the invariance properties follows 

AT~ E ,  = T~ A E ,  

= A A * T ~ w ,  

which completes the proof. 

(13) 

This means that  only the solution w~ has to be computed and stored, the kernels for other  recon- 
struction points x are found by the action of T~ on E~ and by T~ on w~. 
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In the case of a finite number of data  where (A¢)n = A#(xn) ,  n = 1 , . . . ,  N for suitable points 
x~ the reconstruction kernel w,  is a vector in ~ffv with (w~)n = w~(x~).  Then w~(x~ - x) can be 
evaluated by linear interpolation between (w~)m and (w~)m+l with Xm < X ,  -- X < X,~+I. 

For Y = ~ and M reconstruction points the storage needs is M x N complex numbers. If the 
problem has invariance properties this can be dramatically reduced. If translation invariance for 
example holds only N complex numbers have to be stored! 

5 T h e  I n v e r s e  S c a t t e r i n g  P r o b l e m  

In the following we first consider the case of just one incident plane wave in direction (9. We define 
the mapping 

A : L~(~2) --+ L2(F) 

where we first put f2 = / '  = /R 3, that  means we make no use of the fact that  f is compactly 
supported.  Let G be the Green's function of the Helmholtz equation, then 

A~(~) = / ~  G(l'7 - y l )~(y)ay  (14) 

which is a convolution equation. Following [3] the Operator A can be represented as 

A ¢ ( x )  = ,k  ~ h(~')(k]z[) £ Y~(x l]z[ )cnm 
n > o  m ~ - n  

where H~ (1) are the spherical Hankel functions of the first kind and Ym n are the spherical harmonics. 
The expansion coefficients Cnr n are given as 

/, /? Cnrn = Y,~(O) p2jn(kp)qS(pO ) dp dO 
2 

with the spherical Bessel functions j~. This formula can be used to derive a singular value decom- 
position for the operator A. 

LFrom the last section we conclude that  also the reconstruction is of displacement type using 
T1 = T2 = T3 = D z where D ~ f ( x )  = f ( x  - z) in Theorem 2 if e~ (x , y )  = D~E~(y)  = E~(y  - x). 

The mapping AA* is generated by the kernel 

G2(V - ~) =/s 3 G(I~ - xl)G(l¢ - xl)dx o 

Defining with the unitary matrix U the operator D v as D U f ( x )  = f ( U x )  we compute that  
A D  u = D U A  and A A * D  u = D U A A  *, leading to another invariance and a simplification of the 
reconstruction kernel %b~ for circular symmetric E~(]y D. 

After solving AA*¢~(x ,  .) = Ae~(x,  .) for the reconstruction point x we put  for the da ta  given on 
F 

¢~(~) = <ut ¢~(x, "))L=(r) ---- ] r  u~(~)C~( lx-  ~l)d~ - (15) 

Evaluating the integral in (14) at the point ~? = x 6 f2 we find an approximation for the scat tered 
field inside the scatterer as 

:= Z~ G(Iz - Yl)~(y)dy UST(X) 

= f r K ~ ( x  - V)uSO?)d, .  

We observe that  also the kernel K~ can be precomputed independent  of the data. Then we put  
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]~ ( z )  := ¢~(x)/(u~(x) + ~'(x)) 
fr u'(rl)¢-/(lx - r/l)dr/ 

eie~: + f r  u ' ( r~)K'r (x  - rl) dr~ " 

For multiple incoming plane waves we average over these values, resulting in a discretization of the 
integral 

1 f f r u ' ( O , ~ ) ¢ ~ ( [ x - n D d ~  ,~ 
.:-~(z) = ~ J s  . . . . . .  a v  . (16) e ~ex + f r u ' ( O , v ) K ~ ( x  - r l ) d r  I 

The solution of the ill-posed linear problem is achieved by precomputing the reconstruction kernel 
¢~ mad based on this also the kernel K~. Hence the reconstruction is realized by a fast imple- 
mentation of this formula of filtered backprojection type used in x-ray tomography, compare [8], 
[15]. 
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A b s t r a c t .  We investigate the reconstruction of the shape of a sound-soft cylindri- 
cal obstacle of smooth cross-section in a planar acoustic waveguide. This obstacle is 
located in the farfield of a single time-harmonic line source operating at one given 
frequency. Scattered pressure fields are observed on two arrays of hydrophones, one 
on each side of the obstacle. Using a complete family approach, the scat tered field is 
represented as a finite sum of Green's functions whose source locations evolve with 
the retrieved contour. The inversion is cast as a penalized optimization problem 
where the unknown contour is retrieved by iterative minimization of a two-term 
functional. The first term measures the discrepancy between the da ta  and the field 
scat tered by a given obstacle, the second term measures the error in satisfying the 
boundary condition on its contour. After a short description of the mathemat ical  
formulation and of the needed numerical machinery, illustrative results are shown 
for convex and concave obstacles, low and high frequencies (few and many modes 
are propagated),  vertical and horizontal arrays, exact and noisy da ta  observed in 
the nearfield or in the farfield. 

Introduct ion  

We inves t iga te  the  r econs t ruc t ion  of  the  shape  of  a closed, cy l ind r i ca l  obs t ac l e  
of  s m o o t h  cross-sec t ional  con tour  wi th  a known b o u n d a r y  c o n d i t i o n  (here,  
Dir ichle t )  which is p laced  in a p l a n a r  acous t ic  waveguide .  Th i s  is a m o d e l  for 
the  r econs t ruc t ion  of an i m p e n e t r a b l e  t a rge t  in a shal low wate r  conf igu ra t ion  
which consis ts  of  a lossless homogeneous  wate r  layer  wi th  a f lat  p ressure-  
release in terface  wi th  air,  and  a f lat  s o u n d - h a r d  sea  b o t t o m .  Th i s  obs t ac l e  is 
l oca t ed  in the  farf ield of  a single t i m e - h a r m o n i c  line source o p e r a t i n g  at  one 
given frequency.  Sca t t e r ed  pressure  fields are observed  on two receiver  a r r a y s  
(e i ther  ver t icM or  hor izon ta l ) ,  one on each side of  the  obs tac le ,  e i ther  close 
to  or far  f rom it in t e r m s  of  the  wave length  in the  a m b i e n t  m e d i u m  (water ) .  

Th i s  inverse sca t t e r ing  p r o b l e m  is non l inea r  and  s t rong ly  i l l -posed  and,  
w i th  respect  to  i ts  c lass ical  f ree-space c o u n t e r p a r t ,  i t  is fu r the r  c o m p l i c a t e d  
not  only  by  the  p r o p a g a t i o n  of  only  f in i te ly  m a n y  m o d e s  in the  waveguide ,  the  
o the r s  be ing  evanescent  and  n o t  effecting the  far-f ield p a t t e r n  of  t he  obs tac le ,  
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but also by the availability of data at one single frequency which, futhermore,  
are aspect-limited when receivers view a limited part  of the obstacle. 

Generalizing the approach of [1], [2] devoted to free-space configurations, 
the inversion is cast as a penalized optimization problem where a contour 
belonging to an admissible class is constructed by iterative minimization of a 
two-term functional in which one term measures the discrepancy between the 
data  and the field scattered by a given obstacle, while the other measures the 
error in satisfying the boundary condition on the unknown contour of the 
scattering obstacle. An exact contour integral formulation of the wavefield 
obtained by application of the Green's theorem, is employed, its discrete 
counterpart ,  derived by the Nystrhm method [3], providing us with synthetic 
data  as needed. The inversion problem itself is analyzed by introducing a 
complete family of radiating solutions of the 2-D Helmholtz wave equation 
in the waveguide (they are Green's functions of the waveguide). Their  line 
sources are initially distributed on a closed curve which is known to lie inside 
the obstacle. This curve is kept parallel to, and at close distance from, the 
contour constructed in the course of the algorithm. 

In practice, a trigonometric function expansion describes the contour in 
polar coordinates. A finite weighted sum of Green's functions whose source 
locations are, as indicated before, evolving with the retrieved contour, rep- 
resents the scattered field. Each Green's function involved is calculated by a 
summation of modes or, when the distance between source and observation 
point is a fraction of the wavelength, by means of a hybrid ray-mode repre- 
sentation [4]. Unknown coefficients of both expansions are found iteratively 
by a Levenberg-Marquardt solution algorithm. 

The presentation is as follows. First we introduce the boundary integral 
formulation of the wavefield. Second, we review the complete family approach, 
including considerations of uniqueness of the solution of the boundary value 
problem, and completeness of our family of solutions according to the recent 
derivation of [5]. Third, the rather complex numerical machinery needed to 
retrieve the unknown obstacle contour from a finite number of data  samples 
is sketched. Fourth, illustrative numerical results are shown for convex and 
concave obstacles, low and high frequencies (few and many modes are prop- 
agated), vertical and horizontal arrays, exact and noisy da ta  taken in the 
nearfield or in the farfield. Finally, pros and cons of the method are sum- 
marized, and interesting though computationally intensive generalizations of 
the method are pointed out. 

1 B o u n d a r y  i n t e g r a l  f o r m u l a t i o n  

Let us refer to figure 1. An impenetrable cylindrical obstacle of z axis and 
of closed cross-section D in the r = (x, y) plane is placed in a shallow water 
waveguide. The water layer is a homogeneous linear isotropic lossless fluid 
layer of thickness H,  density P0 and sound speed co enclosed between two 
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flat interfaces, the free a i r /water  surface S/ at y = 0 and the rigid bo t t om 
Sb at y = H.  The obstacle cross-section D has a smooth  contour F (at least 
C 2) and the Dirichlet boundary condition holds (the obstacle is sound-soft).  
The water layer exterior to D is denoted as D~. 

p = O  sl 

H incident 
wave 

DriP = 0 
Sb "//////////////////////,4 

XR 

De 

-I x 
D 

vertical array 

water  P0, Co 

"////////////////////////////~ 

Fig .  1. The geometry of the waveguide. 

A t ime-harmonic line source S parallel to z is placed in the farfield of D at 
rs = (xs, Ys). Its operating circular frequency is co and the e - j w t  dependence 
of the field is dropped from now on. The resulting field is observed by means 
of two receiver arrays R, one on each side of the obstacle. These arrays are 
either vertical and then cover the whole water column, or horizontal and of 
finite length; in the first case both  nearfield and farfield da ta  are considered, 
and only farfield da ta  in the second. One denotes by rR = (xn, YR) a given 
measurement  point. 

The corresponding boundary value problem reads 

( A +  k2)p = -5(r~) inDe 
p =  0 o n l "  
p = 0 on S/ (1) 

O~p = 0 on Sb 

where p is the pressure field, where k is the (real) wavenumber in water and 
where the normal  n is directed outside the obstacle domain, into De. 

A radiation condition at infinity may be imposed [6], [7]. Here we s imply 
recall that  under mild geometric conditions solutions of the boundary  value 
problem above are unique as is proved earlier by a Sturm-Liouville technique 
and the Green's  theorem in [5]. 
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Introducing the Green's function G(r, r') of the waveguide we easily obtain 
a system of boundary integral equations [4]: 

o = ~p(r) = po(r) - a(r ,  ~') O~p(r')dr',  r ~ V (2) 

p(r)=po(r)- /rG(r ,r ' )Onp(r ' )dr ' ,  r e  D~ (3) 

where po(r) represents the field G(r, rs) (the incident field) existing in the 
absence of the obstacle, and where the total field p(r) is equal to po(r) + the 
scattered field Ps (r). 

As usual, we refer to equation (2) as the coupling equation and equation 
(3) as the observation equation. Solution of (2) for a given contour yields the 
normal derivative of the pressure field along the contour, and the pressure 
everywhere in the exterior D~ of the obstacle follows by straightforward in- 
tegration of (3). Conversely, when the contour is unknown, both equations 
have to be satisfied, in some sense, from a partial knowledge of the pressure 
in the waveguide (the left-hand side of equation (3)). 

We remark that equation (2) requires augmentation at frequencies corre- 
sponding to interior resonances. However the optimization problem which we 
pose below in §3 is still valid at these frequencies and moreover the numerical 
examples described did not suffer from such resonances. 

The Green's function of the waveguide has three conventional represen- 
tations [8]. It can be expanded into a ray series, or a sum of modes, or one 
can perform spectral integration along the k= axis associated with the range 
x (since the poles lie on the real axis in the lossless case, one needs to deform 
the integration path into the complex kx plane). 

Closely following [4], we prefer to use a hybrid ray-mode expansion of 
G(r , r ' )  in order to obtain accurate numerical results at a moderate com- 
putational cost. We start from the normal modes expansion of the Green's 
function: 

o o  

G(r,r') = E 9m(r,r') (4) 
rrt~O 

where 
2 

g~(r ,  r') -- k!~.~ sin(hy) sin (t3yt )eJ k,d x- x'] 

and 
1 

/ I k i n =  k s -  ( m + ~ ) f i  , _ 

and from the ray representation which is but the sum of the source images 
reflected by the impenetrable walls of the waveguide: 

a(~,  r') = g~p(r, r') (5) 
n=O \ p = l  
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where 
g~p(r, r') = -~(-1)'~+PH~*)(kr~p) 

H~ 1) being the zero-order Hankel function of the first kind and r .p the distance 
between the observation point and the image source point resulting from the 
pth-type combination of n successive reflections on the walls. 

In practice we use a finite number N M  of guided modes when I x - x' I 
is large enough (i.e., larger than a prescribed distance d). And otherwise 
we employ a finite series of NR rays, plus a remainder representation of 
the Green's function obtained by deformation of the integration path in the 
complex k~-plane from the real axis onto the steepest-descent path [4], [9]. 

This calculation of the Green's function is performed both in the inversion 
scheme and in order to calculate synthetic data. The latter calculation is as 
follows. Equations (2)-(3) are discretized using the NystrSm method [3], [10], 
which yields a complex-valued matrix system whose solution is the pressure 
field sought. The use of the Nystr6m method with trigonometric polynomials 
as the approximating functions has the advantage of taking into account the 
logarithmically singular behavior of (2) and ensuring exponential convergence 
with respect to the number of nodes which describe the contour /" [3]. 

2 T h e  c o m p l e t e  f a m i l y  a p p r o a c h  

The reconstruction method is based on the use of a complete family of solu- 
tions of the Helmholtz equation that  satisfy the boundary conditions on the 
walls of the waveguide. It can be shown under mild geometric restrictions [5] 
that  a solution p of the problem (1) together with the additional radiation 
conditions: 

3 c E I R  + such that  

lim 
R - -+  oo  

and 

I=R / ~  dy = c > o; (6) 

£ 

lim / [p[2 dy < o c ;  (7) 
R.-+oo Jl zL= R 

is unique and has a unique modal decomposition. 
Moreover, if rm constitutes a countably dense set of points on a curve /~ 

(cf. figure 1) completely contained in D, then the set of Green's functions with 
these source points is complete in L 2 (F). This complete family may represent 
the solution of (l) in the same way as was shown in [5] in the Dirichlet case. 

This means, in particular, that  any solution of the boundary value prob- 
lem (1) (+ radiation conditions) can be approximated as closely as desired 
by a finite linear combination of these Green's functions. 
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In so doing, we get a new representation of the field scattered by an 
obstacle in the waveguide. And this representation is used to solve the shape 
inversion problem at hand (the retrieval of the contour F),  no inverse crime 
being committed since the simulated data  are obtained by solving the set of 
boundary integral equations (2-3). 

3 T h e  p e n a l i z e d  i n v e r s i o n  

As already indicated, the reconstruction method is based on the complete 
family approach, e.g., [11], and numerically speaking is more directly inspired 
from [2]. First the contour F is assumed to have a trigonometric expansion: 

N N - 1  

/ (0)  = a0 + E a,~ cos(n0) + E aN+n sin(n0) (8) 
n----1 n = l  

Then the corresponding scattered field, henceforth denoted as Ps( f ,  r), is 
taken as a weighted sum of M Green's functions whose source points r]~, m = 
1, • •., M are distributed on a curve/~ located inside the obstacle cross-section 
D and set to evolve in parallel with the retrieved boundary F given by (8) 
by enforcing I rk(0)  ]= a f(0).  We have 

M 

Ps(f,r) = E Cma(r,r~) ( 9 )  

m = l  

The choice of the multiplicative factor a (which is less than 1) is somewhat 
arbitrary. When o~ is too close to 1, contours F (where the source points are 
lying) and F (where the observation points are lying) become very close to one 
another in terms of the wavelength in water, which may result in inaccurate 
or computationally costly calculations of the Green's functions. On the other 
hand a much smaller value of a in practice causes a premature end of the 
inversion procedure [12] in the sense that  the cost functional (see below) to 
be minimized remains large. 

The contour F should be such that  the scattered field ps fits the da ta  
on any given measurement line R (the observation equation is satisfied) and 
simultaneously such that the Dirichlet boundary condition Ps + P0 = 0 holds 
on F (the coupling equation is satisfied). 

To reach this goal we define two functionals 11 and 12 by: 

11 (f, R) fR liPs(f, rR) - p ~  (rR)I[2drR 
fR (rR)II2drR (~o) 

which is the L2 norm of the discrepancy between the data  p ~  recorded 
along R and the corresponding scattered field Ps given by (9) with r taken 
as rR, normalized with respect to the L2 norm of the data; and 
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12(f, F) = f :~ IlPs(:,O) + Po(f,O)ll2Jy(O)dO 

fo >~ Ilpo(f, 0) 112 Ji (O)dO 
(11) 

with 

t t  2 J/(0) = ~ (0) + \ dO ] 

which is the L2 norm of the discrepancy between the totM field ps + Po on 
the contour F at angle 0 and its exact null value, normalized with respect to 
the norm of the incident field, where Ps is evaluated using (9) for f given by 
(8), J! being the Jacobian of f .  

Integrals in (10-11) are discretized by a trapezoidal rule, Q test points 
being prescribed on F. As for the number M of Green's functions, it is hence- 
forth equated to Q so that source points r~ on/~ correspond point-to-point 
to the nodes on F fixed by angles Oq. When several sets of data are recorded 
for the same obstacle by varying the measurement configuration, we take the 
cost functional to be the sum of each cost functional. 

The problem is now to simultaneously determine the two sets of coeffi- 
cients {an} and {c,~ } which minimize the cost functional L = ll +c~12, ¢ being 
a penalty parameter favoring either the observation cost 11 or the boundary 
cost 12 in the reconstruction procedure. 

This optimization problem is highly non-linear. In particular the coeffi- 
cients {cm} depend on the {an} via the points rim. As for the support of the 
integral in (11), let us note that it should have been the obstacle contour F, 
causing further difficulty since F evidently depends upon the {an}. But, by 
transformation onto the unit circle, the integration contour (the unit circle) 
becomes independent of the unknown contour, the shape dependence being 
accounted for by the Jacobian of the transformation f .  

Let us emphasize that the trigonometric representation (8) which is as- 
sumed for the obstacle contour constitutes strong a priori information about 
the obstacle, in addition to the already required smoothness. Indeed, the con- 
tour is constrained to be star-like with respect to the origin of the coordinate 
system (f, 0). This representation is convenient since it reduces the class of 
contours where the unknown one is sought, but it is not imposed by the 
underlying theory of the complete family inversion. 

In practice, the coefficients {an } and {cm } are calculated by means of a 
standard non-linear minimization routine which employs a Levenberg-Mar- 
quardt algorithm. The procedure is stopped when the cost functional is small 
enough, or when it reaches a plateau. As indicated in the above, multiple data 
obtained by varying source and/or receiver locations are treated by simply 
adding their respective cost functionals and minimizing the resulting sum. 
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4 N u m e r i c a l  r e s u l t s  

Results are given for a hard-bo t tom waveguide of height H = 100 m and 
speed of the compressional waves in water co = 1500 m/s .  The operat ing 
frequency is either 30 Hz or 100 Hz, 4 or 13 modes being propagated  without  
at tenuation,  respectively. The corresponding wavelength in the water is A = 
50 m or 15 m. The boundary F of the obstacle (centered at 50 m depth 
and 0 m range) is either elliptic (horizontal semi-axis a = 15 m, vertical one 
b = 7.5 m) or it looks like a three-leaf clover (f(t~) = 10 - 3 sin(36) m).  Both 
perimeters are of the order of 70 m, and in the following we refer to the 10 
m-radius  circle as the "unit circle". 

We consider a source S located on the left side of the Obstacle at a large 
range r s ( x s  = - 1 0  km, Ys = 55 m). Data  consist in the resulting pressure 
field sampled by two vertical arrays R of length L = H (41 ideal hydrophones 
equally spaced with separation A = 2.5 m) or by two horizontal arrays of 
length L = 500 m (41 ideal hydrophones each A = 12.5 m).  The vertical 
arrays are located in the nearfield or the farfield of the obstacle at range 
xR = + 40 m or =E 5 km. The horizontal ones are only located in the farfield, 
at depth yR = 25 m from range - 5  km to - 4 . 5  km and 4.5 km to 5 km. 

The synthetic da ta  are calculated by directly solving the boundary  inte- 
gral equations (2-3) as specified in §2. Moreover in the direct solution we take 
at 30 Hz (resp. 100 Hz) 32 (resp. 50) equidistant nodes on / ' ,  which corre- 
sponds to a sampling step (arc length) less than one-tenth of the wavelength 
in water while in the inversion we only use 16 equiangle nodes on F. 

The initial contour introduced in the iterative opt imizat ion is a circle of 
radius a0 = R0 (i.e. {a,~} = 0, n >_ 1) and we often take the "unit circle" 
(R0 = 10 m) which is in some sense the simplest obstacle of size close to the 
size of the unknown obstacle. F is assumed to have a tr igonometric expansion 
f(~) given by (8) with N = 4 cosines and 3 sines. The number  of nodes Q 
used to retrieve F is equated to the number  of Green's  functions M = Q = 16 
to prevent too large a ratio between the number  of unknowns and the number  
of da ta  points. As for the {crn} they are initially set to zero (all equivalent 
sources are "turned off"). The parameter  values are ~ = 0.75 and c~ = 1. 

Typical  da ta  used in the inversion are shown in figure 2. Here the magni-  
tude of the pressure field at 30 Ha recorded on the two vertical arrays and the 
two horizontal ones is displayed for both the elliptic and the clover contours. 

Contours retrieved f rom data  observed on the vertical arrays placed either 
in the nearfield or in the farfield at 30 Hz are shown in figure 3 while the 
influence of the type of arrays used (vertical or horizontal) is exemplified in 
figure 4 (in the case of farfield da ta  only) at the same 30 Hz frequency. 

Reconstructions shown in figure 3 appear  to be of similar quality (this is 
part icularly true with the clover contour) in both  the nearfield and the farfield 
measurement  configuration, even though evanescent modes are filtered out 
with range and only very few modes are propagated at this low frequency. 



138 

0.1 [ ellipse 
Clover -"" "• ...... 

0.06 ¢ '~ 

~' 0 02 

-5000 -4750 -4500 
range(m) 

0.1 

0.06 

0.02 

~•,~ ellipse - -  
~ clo~er .............. 

f 
g 

0 

20 

40 

60 

80 

100 

0 

20 

40 

60 

80 

100 

........ • ............ • " '"•i~ 

o . . . , ,  : 1  
....... • ........... e-- .  

. o . . ~  

t-~-Z, o - " ' " ' " " ~  ....... elhpse - -  
, ~ o . . ~ l o v e r  ............. 

0.02 0.06 O. 1 
pressure magnitude 

4500 4750 5000 0.1 
range(m) 

........ ........ " ......... ,.--K ~ " ........ ellipse"" " "  _ ~  
, ~r" "~ ,clover .............. 

0.02 0.06 
pressure magnitude 

Fig. 2. Far-fields observed along the horizontal arrays (left) and the vertical 
arrays (right) at 30 Hz for the elliptic and clover contours. The arrays are 
on the left side (top) or on the right side (bottom) of the obstacle, the source 
is on the left side. 

As for those obtained with horizontal arrays of finite length, they appear  
(see figure 4) only slightly less accurate than those obtained with vertical ar- 
rays even though windowing effects are expected with horizontal ones, while, 
in contrast,  the coverage of the obstacle is complete with vertical ones (the 
waveguide walls are impenetrable  and the arrays span the full water  column).  

Notice that  with either horizontal arrays or vertical ones the measurement  
step is such that  the field at the highest spatial  frequency is suitably sampled 
as follows: (i) When measuring the field along depth at  given range, this 
frequency corresponds to the 4-th mode (m = 3) and following (4) to fl - 7~ 
and thus to a period equal to 9 m while the sampling step is A = 2.5 m 
(about one-fourth of this period); (ii) when measuring the field along range 
at given depth this frequency corresponds to the 1-st mode (m = 0), or to 

k0 = ~/k 2 - -  4H 2 , thus to a period of 32 m while the sampling step is A = 12.5 7r 2 

m (somewhat less than  one-half of this period). 

In figure 5 the results at the 100 Hz frequency are compared to those 
observed at 30 Hz. In both cases two vertical arrays are placed in the farfield. 

At 30 Hz it is seen that  the elliptic contour is not retrieved as well as the 
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Fig.  4. Contours retrieved from exact farfield data  at 30 Hz (horizontal or 
vertical arrays). 

clover contour is, while the opposite is true at 100 Hz. Indeed, the elliptic 
contour cannot be represented by a finite tr igonometric expansion whereas 
the clover contour is. So, more information appears needed if the elliptic 
contour is to be retrieved accurately, which here means more propagated 
modes (i.e., a higher frequency of operation) since we are in the farfield 
of the obstacle. Notice that  (see fgure  3) the elliptic contour is somewhat 
bet ter  retrieved when nearfield data  are recorded since evanescent modes are 
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n o w  presen t .  As for  t he  c lover  c o n t o u r ,  i ts  c o n c a v i t y  a n d  i ts  l a rge  p e r i m e t e r  

(5 w a v e l e n g t h s  a t  100 Hz)  t e n d  to  p e n a l i z e  i ts  r e c o n s t r u c t i o n  a t  t h i s  h i g h  

f r equency .  

F i n a l l y  t h e  r o b u s t n e s s  o f  t h e  i nve r s ion  m e t h o d  is c o n s i d e r e d  w h e n  an  

u n i f o r m  a d d i t i v e  noise  e f fec t ing  b o t h  t h e  rea l  a n d  t h e  i m a g i n a r y  p a r t  o f  t h e  

o b s e r v e d  p res su re  f ield is added .  T y p i c a l  r e su l t s  a re  s h o w n  f igure  6 u s i n g  t w o  

v e r t i c a l  a r r a y s  in t he  far f ie ld  a n d  va r i ous  s i g n a l - t o - n o i s e  r a t i o s  SNR. 
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5 Conclusion 

From the results presented here and elsewhere (abundant material is avail- 
able in [13]), it appears that  the complete family approach is able to retrieve 
with a fairly good success the contour of 2-D sound-soft convex or concave 
obstacles placed in a waveguide with impenetrable walls in a number of mea- 
surement configurations (near or farfield data, exact or noisy data,  horizontal 
or vertical arrays) at a single frequency. The main drawback, in addition to 
the computat ional  complexity of the method, seems to be the fact that  the 
contour must be star-like with respect to a given point, which in particular 
means that  one point inside the obstacle must be found by other means (for 
example, a backpropagation algorithm) or must be assumed beforehand. 

Clearly some extensions of this method are straightforward - in addition 
to the introduction of multifrequency data. The introduction of a penetra- 
ble sea bot tom (or a water layer whose speed of sound varies with depth) is 
possible, though that  the Green's functions would have to be calculated in 
the Fourier domain, at a much higher cost, modal expansions becoming ap- 
proximate. Less straightforward though still feasible in the same theoretical 
framework is the case of 3-D obstacles (let us refer to a somewhat similar 
analysis [14]). But more complicated geometries (an obstacle lying on the 
sea bot tom,  or partially buried within) require further theoretical analyses 
before any numerical exploitation (for example, it is required in [5] that  the 
contour be completely confined in the waveguide). 
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Abs t rac t .  A large class of inverse scattering problems involves the attempt to de- 
termine the shape, location, and constitutive parameters of a bounded object or 
objects from a knowledge of the field scattered by the object(s) when illuminated or 
ensonified by a known time harmonic incident field. The fields may be electromag- 
netic or acoustic and while the field equations are different in each case, the inverse 
problem may be cast in a general framework which accommodates both phenomena 
and in fact may be extended to include time-harmonic inverse scattering of elastic 
waves. This class of problems has been attacked in a number of ways including 
Born-based methods [1], Newton-Kantorovich methods [2], diffraction tomography 
[3], and dual space methods [4]. Recently another method, a modified gradient tech- 
nique has been developed [5] and used with good success in a variety of different 
cases. The present paper describes the essential features of the modified gradient 
approach and reports on recent experience in a number of specific realizations rep- 
resenting different physical situations and different amounts of a priori information 
about the scatterer. 

1 F o r m u l a t i o n  

Let B denote the scattering object(s), a finite number of bounded, connected 
open sets in ]R ~ with smooth (e.g. piecewise C 2) boundary, OB. Assume that  
B is irradiated by a number of known incident fields u~ nc (p), j = 1, 2 , . . . ,  J ,  

where p is a position vector in IR n. For each j the scattered field uS(p) is 
measured on S, a set of points (possibly an n - 1 dimensional manifold) ex- 
terior to B (S N B -- ~). It should be emphasized that  the field quantities 
may be scalar or vector quantities depending on the physical model under 
consideration. Denote the measured data  by f j (p) ,  which will be equal to 
uS(p) only in the absence of noise and measurement error. The total field 

induced in B by u} nc (p) is denoted by uj (p), while the contrast (the differ- 
ence between the constitutive parameters of B and those of the background 
]Rn\/~) is denoted by X(P) which is assumed to be a scalar valued function of 
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position. In all the examples t reated to date the contrast  X(P) is assumed to 
inc is given for the same be independent of the incident fields u} nc (p). When uj 

frequency the variat ion with j denotes different positions of the source or 
directions of the incident field, and the independence of the contrast  with the 
respect to the incident field is evident. When the incident fields vary  with 
frequency the contrast  may  vary as well. For example in Maxwell media,  
the contrast  takes the form @B -~- iaB/W)/~O -- 1, where ~B and o" B are the 
permi t t iv i ty  and conductivity of B, which clearly depends on the operat ing 
frequency w. However the problems considered thus far for frequency-varying 
incident fields concern physical situations where the consti tutive parameters  
are known in B, but the shape and location of B are unknown. In such cases 
the function X(P) which is sought is the characteristic function of the domain  
B. For the class of problems considered here, the field uj (p) in B satisfies an 
equation (the object equation) of the form 

inc Uj--GB~XUj =uj , (1) 

while the scattered field on S satisfies an equation (the da ta  equation) of the 
form 

s = a s s  X uj (2) uj 

where GB~ and Gs5 are linear operators,  

Gsj : L2(B) --+ L2(B), Gsj : L2(B) -+ L2(S) . (3) 

More generally GBj may  map  Sobolev spaces Hs(B)  into Ht (B) ,  and Gsj 
may  map  Hs(B) into L2(S). We always use L2(S) as the range of Gss, even 
though the map  may  be much smoother,  in order to be consistent with the 
measured da ta  which is only assumed to be square integrable. In the realistic 
case tha t  da ta  is measured only at  discrete points, we assume an L2 interpo- 
lation. In many  of the inverse problems under consideration, the position and 
shape of the scattering obstacle B is unknown, hence we assume tha t  a priori 
information is available that  restricts B to lie in a known larger bounded 
domain D and that  D A S = ~. I t  is this known test domain D tha t  is then 
used for the object and da ta  equations 

inc Uj--GD~XUj=Uj , fj -=GS~XUj 
GDj : n 2 ( D )  -4  L 2 ( D ) ,  Gs~ : L 2 ( D )  -+  L 2 ( S )  , (4) 

where the contrast  X vanishes in D \ / ) .  This ensures tha t  if X is found, then 
not only is the contrast  known in B but  supp X = / ~ .  The  size of D directly 
depends on a priori information on B; the more tha t  is known about  B, the 
smaller the difference between B and D can be made. Since D will eventual ly 
be discretized, there is a clear advantage in choosing D as small as possible. 

The  essential features of the modified gradient method m a y  now be given 
without  further specification of Gs5 and GDj. Of course, precise definitions 



145 

are needed to implement  the method,  and these are given in each example  
presented in what  follows. For any ~ E Lo~(D) and wj C L2(D) we m a y  define 
the residual errors in the object and da ta  equations when X, uj  are replaced 
by ~, zj as 

inc 
rj  = uj  -- z j  + GD~ ~ zj  , pj = f j  -- Gs~ ~ zj  . (5)  

The inverse problem is now formulated as follows: 

for known incident fields ui~C(p), measured da ta  f j ,  test domain D and nor- 
malization constants WDj and wsj, find X E U~  and uj E U2 to minimize 
the error functional 

J 
2 

j ~ l  
(6)  

w h e r e  z = z j ) .  

The set of admissible contrasts Uoo is a subset of Lo~ (D) which incorpo- 
rates any available a priori constraints. Similarly [72 is a subset of L2(D).  
In the absence of any additional knowledge of X and uj, Uo~ = Lo~ (D) and 
U2 = L2(D). The minimizat ion is carried out by constructing a sequence of 
approximat ions  {X-~, Ujm} which reduce the error functional at  each step. 
The sequence is constructed iteratively. First a set of s tar t ing functions X0 
and Ujo are selected. This is not a trivial ma t t e r  since the u l t imate  conver- 
gence of the sequence to the desired solution will depend on a reasonable 
choice of start ing functions. Some of the choices that  have been used are 
described below. Once the start ing functions are defined, a sequence is gen- 
erated according to the following updat ing scheme 

Xm(P) = Xm-I (P )  + ~m din(p) ,  Ujm(P) = Ujm--I(P) -k ajmVjm(P) (7) 

where din(p) and Vim(P) are updat ing directions and C~jm, tim are constants.  
The  choice of updat ing directions din(p) and Vim(p) is given below. Once this 
choice is made the constants ~m and C~jm are found by minimizing the error 
functional 

F ( X m - 1  + t3mdm, U l m - ]  q- ~ l m V l m , . . . ,  UJm-1 + O~JmVJm) • (8) 

In many  of the examples discussed below it is assumed tha t  c~jm -- (~m for 
every j which reduces this algebraic opt imizat ion problem to one of finding 
the two, possibly complex, constants am,  tim- 



146 

2 Update Directions 

For the update directions dm (p) we have used either gradient directions 

a F (9) din(p) = g d ( p ) : =  ~XX xm-,,u.~-, 

where 0__~F x-~-~,t'-~-a denotes the gradient of F with respect to changes in the 

contrast, holding the field quantities constant, evaluated at X m - 1  and urn-l,  
or Polak-Ribi~re conjugate-gradient directions 

d d d < 9 d , 9  d - gdm-i > D  (10) 
dm (p) = gd  + "Ym "~- 1, ~/~ = d 2 

119m-111~ 

Explicitly 

O F  

x . , - i  ,um_l = OX 

J 

~jm-i [w.j G* G* Dj r i m - 1  -- WSj s¢ P j m - 1 ]  (11) 
j=l  

where G* D~ and G* sj denote the adjoint operators mapping L2(D) into itself, 
and L2(S) in L2(D), respectively. 

The update  directions for the fields have been chosen in the simplest case 
as the residual field error at the previous step 

vym = r j m - 1  , (12) 

or more effectively as the gradient 

v O F  × . ~ - l , u m - 1  (13) 
Vjrn z g j m  :'= OUj 

or Polak-Ribi~re conjugate gradient directions 

V V V 
g j m '  g j m  -- g j m - 1  >D v v v (14) Vim ~- g j m  q- -~ 7ira v i m - 1  , ,, 2 

~jm I]g~m-ltID 
For each j the direction g~m is the gradient of F with respect to uj, holding 
the contrast and other field quantities constant,  evaluated at X~-z ,  Um-l .  
Explicitly 

O F  x . . - , , . . . - ,  = - - W D ~ ( r j . ~ - I  -%~_~ G*Dj r j . , _ ~ )  - ~ s ~  2~-1 c*$3 p j m - 1  • 
Ouj 

(15) 
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3 I n i t i a l i z a t i o n  

A number of different choices of starting functions have been employed. The  
simplest is the Born approximation wherein we choose 

inc (16) x o  = O , Ujo = Uj 

Better  results were obtained with a slightly more sophisticated choice, a "best 
constant" value for X0 found by running the algorithm using the Born start ing 
values but  choosing the update  directions in the contrast  to be constant,  
d i n ( p )  = 1, so that  the updates in contrast are always constant. 

An even more elaborate, but generally more effective starting guess was 
obtained by "back propagating" the measured data. First an initial source 
distribution in D is found by defining qsj = V G ~  f j  where ~/ is chosen to 

minimize ~ J 1  ]IPj I[ and is found explicitly to be 

J 
G * < f j ,  sjGs /j >s 

J : '  (17) 3 ~ =  j 

G* 2 E llas, s3 f lls 
j=l 

Once ~j  is found we define 

,no ( lS)  ujo = GD~ q~j A-uj  , 

then by equating 

Xo u j o  = ~ j  (19) 

we may estimate X0 as, for example, 

J 
~Sj fly0 

j=l  (20) Xo--  j 

lujol 2 
j = l  

4 S p e c i f i c  e x a m p l e s  

A number of tests of this general method have been made with and without  
additional a priori information. They fall roughly into two classes, single- 
frequency measurements with large spatial diversity in source and receiver 
location and multifrequency measurements over spatially limited source and 
receiver locations. In addition different kinds of a priori information have 
been incorporated into the algorithm. 
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4.1 2 D  A c o u s t i c s  - T M  E l e c t r o m a g n e t i c s  

In this example  the Mgorithm had the following explicit realization: S was a 
circle of radius 9A, D was a 3A × 3A sided square centered in S, B consisted 
of two distinct homogeneous square cylinders of diameter  3A/4 with 3)~/4 
separation. A is the wavelength exterior to D and the contrast  X(P) = 0.8. 
Physically X is either [ ( c2 /c2 (p ) ) -1 ]  in acoustics or [(gD(p)/e)--1] in electro- 
magnetics,  where c and CD are the acoustic wave speeds exterior and interior 
to D respectively, while c and ~D are the exterior and interior complex per- 
mitivities. The operators are: 

X u~ "-.- ik--~2/~ Ho0)(k[P - q]) x(q)  uj (q)  dq, p e S2, f l  = S or G a  D 
4 

(21) 
where k is the wave number  in the background, and H0 0) is the zero order 
first kind Hankel function. The  weighting constants were chosen to be the 
same for all j ,  

J 
2 - -1  

j = l  

J 

ws, = ws= . . . . .  ws j  = {~--] [[fyll~}- '  (22) 
j = l  

and the updat ing constants OZjrn were taken to be the same for every j ,  
aim = a,~. The start ing values were chosen as the "best constant" value for 
X and the fields associated with this value, as described previously. Synthetic 
da ta  was produced by solving the forward problem using a Galerkin method.  
The discretized version of the algori thm was obtained by selecting 29 equally 
spaced points on S, each of which served successively as a line source while all 
points served as receivers. The results of the iteration, both  with and without  
noise, are shown in Fig. 1. More details may  be found in [5, 6]. 

4.2 T E  E l e c t r o m a g n e t i c s  

In this example we use exactly the same configuration as in 4.1, however the 
different polarization implies new definitions of the operators  in which the 
dependence on X is no longer linear: 

i /D x(q)  VqH~l ) (k[p_q[ ) .Vqu j (q )  dq, p e 12, (2 = S or D. Gg2XUj := 4 1 + x(q)  

(23) 
To restore linearity we define M := X/(1 + X) and update  M ra ther  than  

X. The update  directions are as before, using the operator  definitions given 
above (and their adjoints) with M replacing X. All other definitions are as in 
4.1. Results using this algorithm are shown in Fig. 2. Addit ional  detail  m a y  
be found in [6, 7]. 
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Fig. 1. Real (upper row) and imaginary (lower row) part of the contrast 
reconstructed after 64 iterations with the modified gradient algorithm from 
noiseless (left column) and noisy (middle column: 10% noise level) data com- 
pared to the exact profile (right column) - the TM case. 

Fig. 2. Real (upper row) and imaginary (lower row) part of the contrast 
reconstructed after 64 iterations with the modified gradient algorithm from 
noiseless (left column) and noisy (middle column: 10% noise level) data com- 
pared to the exact profile (right column) - the TE case. 
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4.3 Tota l  Var ia t ion  

The modified gradient algorithm as given earlier has been shown to be ef- 
fective and stable with respect to noise despite the absence of regularization 
terms usually essential in ill-posed problems. However the addition of regu- 
larizers can considerably enhance the quality of the reconstructions. There is 
in fact a wide choice of regularizing constraints which have been used with 
good effect [8, 9]. One such constraint is total variation which has been used 
by [10, 11, 12] and applied to the modified gradient algorithm in [13]. The 
essential feature is the definition of a new cost functional: 

FTV : g -4- ~dWV/D V/IVXI2 d- 6 2 dq (24) 

where F is the error functional defined previously. At the present time the 
penalty parameter WTV and the small parameter 5, which restores differ- 
entiability of the total variation, have been chosen only through numerical 
experimentation. Even with the new cost functional the update directions for 
the field remain unchanged whereas the gradient direction for the contrast is 
altered by replacing gd defined previously by 

[ vx -, (25) 
- v .  jlvx _ll2 + . 

The positive effect of the addition of the total variation penalty term is seen 
in the reconstruction of the two cylinders considered in 4.1, see Fig. 3. 

Fig. 3. Real (upper row) and imaginary (lower row) part of the contrast 
reconstructed after 64 iterations from noisy data (10% noise level) with the 
total variation constrained modified gradient algorithm in the TM (left) and 
TE (middle) cases compared to the exact profile (right). 
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4.4 P e r f e c t  C o n d u c t i v i t y  

When a priori information is available and can be incorporated directly into 
the algorithm, its performance can be considerably enhanced. For example 
in [14] it was found that  the Mgorithm was ineffective if the contrast was too 
high. An upper limit of reconstructibility was found to be kdx = 67r, where 
d was the diameter of the test domain. However if it is known a priori tha t  
the contrast is large positive imaginary (e.g. a metallic conductor),  then this 
information may be incorporated by replacing X by i(  2, ( r ea l  The  algori thm 
is slightly altered since ( rather than X is updated. The most significant effect 
of this change is that  the gradient of F with respect to (,  evaluated at the 
( m -  1) st step is now 

gm --2  (m--1 ~ d =  [gm] (26) 

where gd  was defined previously. Observe that  the gradient vanishes if ~m-1 
= 0, in which case the contrast remains zero. Hence, zero may not be used as a 
starting value. An illustration is provided in the case of TM electromagnetics 
as in 4.1 with the following changes: S is now a circle of sufficiently large 
radius so that  the far field approximation may be used; B is taken to be a 
circle with radius a such that  ka = ~r centered asymmetrically with respect 
to D. The  operators are the same for every j .  They read: 

GD X uj = ---~- (2(q) u j (q)  (kiP - ql) dq, p e D 

Gs X uj = i/D e-ikp'q (2 (q) Uj (q) dq, 15 c S (28) 

where 15 is the unit vector in the direction of observation. The initial values 
in this case were obtained by back propagation as described earlier. The  data  
were obtained from the series solution of the perfectly conducting cylinder 
problem and the discretized version of the algorithm had D subdivided into 
31 × 31 subsquares and 30 incident plane waves equally spaced on the unit 
circle with these 30 directions also serving as receiver directions for each 
incident wave. The results of the algorithm are shown in Fig. 4 where it is 
seen that  the shape and location are well reproduced. More detail is found 
in [15]. 

4.5 S p a t i a l l y  L i m i t e d  D a t a  

In this and the following examples it is assumed that  the contrast in the 
object is known but the location and shape is unknown so that  X represents 
the characteristic function of the scatterer which, because it is non-negative, 
is replaced by ~2, ~ real. In this first example of this class of spatially limited 
data  it is assumed that  the scatterer is a void in a homogeneous lossy medium 
(concrete) which is illuminated by a plane wave using three different frequen- 
cies (7, 10, and 13 GHz) and that  the scattered field is measured on a line 
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Fig.  4. Reconstruction of an impenetrable circular cylinder with perfect con- 
ductivity a priori information in the modified gradient algorithm. 

perpendicular to the direction of incidence. Thus S is a line segment 32 cm 
long, 4.5 cm distant from the center of B, and 64 receivers are located on it; 
D is 1.13cm sided square, B is a circle of radius 0.43cm and the operators 
a r e  

i I D a 2  2 G ~ j ~ u j  : -~ (kDj -- k~)uj(q) H~l)(kjlp - ql) dq, p • Y2, Y2 = S or D, 

(29) 
where kDj and kj are the wave numbers in D and in the background, respec- 
tively, for different frequencies. The weights WDj and ws~ are chosen as in 
4.1 to be independent of j but  c~j,~, the constants in the field updates, are 
now allowed to differ for each j .  This increases the dimension of the algebraic 
optimization problem at each step. Results obtained using this algorithm are 
shown in Fig. 5. The starting values were those obtained by backpropagation. 
The stability with respect to noise is evident. More detail is found in [16]. 

4.6 B i n a r y  C o n t r a s t  

In this set of examples we again consider spatially limited frequency diverse 
data  for reconstructing the characteristic function of the scatterer with two 
major differences. First the background medium is no longer homogeneous 
but instead consists of two dissimilar homogeneous half spaces with the scat- 
terer embedded in one of them. An extensive bibliography on this problem 
may be found in [17]. Secondly the fact that  the contrast is not smooth (X -- 0 
or 1) is taken into account. If the contrast is updated in the gradient direc- 
tion, as in the previous example, the updated contrast will no longer be a 
characteristic function. In fact the gradient does not exist in the space of char- 
acteristic functions. To account for this, we approximate the characteristic 
function by a smooth function of the form 

X ( p ) = [ l +  e x p ( - ~ - ~ ) ] - i  , (30) 
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iteration 128 

Fig.  5. The results obtained with the modified gradient algorithm in the 
case of microwave imaging of a void in a homogeneous concrete medium with 
noiseless (upper row) and noisy (lower row: 30% level random noise) data. 

where T is a real valued function of position and 0 is a real positive parameter 
which controls the rate at which X changes from 0 to 1. w(p) is the function 
which is updated in the algorithm, 

7-m (p) = ~-m- 1 (P) + 3m dm (p) . (31) 

The operators are now 

/ ,  

G ~ x u j  := /n  G(p ,q)  x(q) ( k ~  - k~) uj(q) dq, p • 12, 12 = S or D 

(32) 
where G(p, q) is the Green's function for the unperturbed problem (see e.g. 
[17] for an explicit definition), kD¢ is the wave number in D at the j th  fre- 
quency whereas kj is the wave number in the half space containing D, and 
x(q) is the approximation to the characteristic function defined above. With  
these definitions of the operators, the algorithm is as given before with the 
gradient of the error functional with respect to changes in z- given by 

gd :~_ 2 d~T .r=.rm_1 . Re ~ ~tjm_l {WD~ G* * . Dj Tim--1- WSj GSj Pjm-1} 
j = l  

(33) 

Here the weights are given by 

i n c  2 - -  1 WD¢ = (lluj lID} andws~ --- {llfj[[~) -1 (34) 
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and the constants Oljm in the field updates are allowed to vary with j. This 
binary contrast formulation has been employed in a number of different sit- 
uations and we present three examples here. 

The first involves a local perturbation of a two fluid medium with incident 
acoustic waves normal to the interface at frequencies wj = 500, 700, 1100, 
1400, 1700, and 2000kHz. The perturbation B is an 0.8 mm sided square 
centered at 1 mm depth within a test domain D which is a 2 m m  sided 
square. S is a line segment 1.5 mm above the interface. The acoustic velocities 
were c o  = cl -- 1470m/s and c2 = 1800m/s  where Cl denotes the velocity 
in the upper fluid layer and c2 the velocity in the lower half space which 
contains the perturbation. In the discretized version, D is decomposed into 
20 × 20 subsquares and the field was measured at 64 points 0.4 mm apart  on 
S. Results of the inversion algorithm both with and without noise in the data  
are shown in Fig. 6. 

iteration 64 

exact 

iteration 128 

Fig.  6. The results obtained with the binary modified gradient algorithm 
in the case of the ultrasonic imaging of a local perturbation in a two-fluid 
medium with noiseless (upper row) and noisy (lower row: 20% level random 
noise) data. The interface is located on the left hand side of the pictures. 

The second example concerns eddy current non-destructive testing of a 
defect in the surface of a metal-air interface. The incident fields are electro- 
magnetic line sources (TM polarization) placed in air near the metal inter- 
face. Six frequencies between 10 and 349 kHz were employed. The defect is a 
0 .3mm sided square void with one side on the air metal interface. The test 
domain D is a 0 .5mm sided square. The measurement domain S is a line 
segment 1.5 mm above the interface. In the discretized version D was again 
divided into 20 × 20 square pixels and the field was measured at 64 points, 
0 .3mm apart, on S. Figure 7 shows the results of the binary version of the 
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modified gradient algorithm and compares the performance with that  of the 
original algorithm without introducing the particular form of the character- 
istic function employed here. 

iteration 32 iteration 96 

iteration 192 

Fig.  7. Comparison of the modified gradient algorithm (upper row) and its 
binary version (lower row) in the case of eddy current imaging of a void in a 
metallic block. The air-metal interface is located on the left hand side of the 
pictures. 

Another example of this binary constraint in a two layer medium involves 
a metallic structure immersed in sea water illuminated by low frequency 
electromagnetic waves (TM polarization). In this case B is a 9 m sided square, 
D is a 30 m sided square. D is again divided into 20 x 20 square pixels and 
S is a line segment 1.5m above the interface which has 64 equally spaced 
receivers, 3 m apart. Six operating frequencies between 10 and 207 Hz were 
employed. Two different choices of conductivity within B were used, c~s = 
107 S /m and aB = 80S/m. The approximation k~5 - k~ ,,~ i w j # a s  was 
employed in the operators. Results of this binary version of the algorithm are 
shown in Fig. 8. These examples demonstrate the effectiveness of this version 
of modified gradient algorithm in a number of relatively complex physical 
situations. More detail may be found in [181 . 

4 . 7  B l i n d  R e c o n s t r u c t i o n  

A final example of the modified gradient approach is provided from experi- 
mental  da ta  obtained at the Ipswich test site of Rome Laboratory,  Hanscom 
Air Force Base. The physical scattering experiment involves TM electromag- 
netic scattering of an object in free space at a single frequency (10 GHz). 
A priori information was supplied that  the target was perfectly conducting, 
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iteration 96 

exact 

iteration 192 

Fig.  8. The results obtained with the binary modified gradient algorithm in 
the case of low frequency electromagnetic imaging of an immersed metallic 
structure with two different choices of c~s (upper row: ~B = 107 S/m,  lower 
row: aB = 80 S/m). The air-water interface is located on the left hand side 
of the pictures. 

F ig .  9. Blind reconstruction of a mystery object from experimental data  with 
two different versions of the modified gradient method: the perfect conduc- 
tivity version 4.4 (upper row: D = 12.6 × 12.6 c m  2 = 63 × 63 pixels) and the 
binary version 4.6 (lower row: D = 16 × 16 c m  2 = 40 × 40 pixels). 
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symmetric about  the x and y axes, but  the actual shape of the target  was not 
revealed until after the reconstructions were completed. Two different forms 
of the modified gradient algorithm were employed, the version described in 
4 .4  and the binary version described in 4.6. Figure 9 show the results of 
these two approaches, both of which successfully reconstructed the object, 
later revealed to be a strip 4A (12 cm) wide and 0.106A (0.32 cm) thick. More 
detail on this example may be found in [19, 20]. 
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A b s t r a c t .  Karp's  theorem states that if the far field pattern corresponding to the 
scattering of a time-harmonic acoustic plane wave by a sound-soft obstacle in R 2 is 
invariant under the group of rotations, then the scatterer is a circle. The theorem 
is generalized to the elastic scattering problems and the axisymmetric scatterers in 
R 3 . 

1 I n t r o d u c t i o n  

In Mart in  and Dassios (1993), the authors proved some generalizations of  
Karp ' s  theorem to  elastic scattering theory, using uniqueness theorems for 
the inverse problem. They  raised the question of a direct proof  of this result 
(without uniqueness theorem), and discussed some difficulties in this proof. 
This paper  is an answer to this question. In acoustic scat ter ing theory, the 
author  had already generalized the Karp ' s  theorem to scat terers  with any 
invariant group (Ha Duong (1996)), but  the proof  was quite different. The  
point here is an association of an idea of Kirsch and Kress in their  proof  of 
Karp ' s  theorem for acoustic scatterers,  using a superposi t ion of plane inci- 
dent waves, and an appropriate  exploitat ion of the so called Atkinson-Wilcox 
expansion for elastic waves. In doing this, we also prove a more general ver- 
sion of K a r p ' p  theorem, valid for axisymmetr ic  scatterers.  On the other  hand,  
contraryly to Mart in  and Dassios (1993), we have only to suppose an invari- 
ant  hypothesis for one type of incident waves (either pressure or shear waves) 
to obtain the invariance of the scatterer.  

The main idea is first presented for acoustic problems in section 2. Ap- 
plying this idea to elastic problems, besides a first complicat ion due to  the  
vector nature  of  the two far field pat terns ,  a technical difference appears  be- 
tween the cases of P-incident and S-incident waves, compelling us to a more  
involved proof  in the last case. These cases will be  presented respectively in 
section 4 and 5. Section 3 is devoted to some recalls and notat ions concerning 
the Atkinson-Wilcox theorem for elastic scat ter ing theory. 
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2 T h e  A c o u s t i c  P r o b l e m  

We consider the acoustic scattering problem of a t ime harmonic  plane wave 
by an obstacle D in R a. To avoid technical difficulties, we suppose tha t  D 
be an open bounded set with a regular border  P = OD a n d / 2  = ~ 3 \ D  is a 
connected exterior domain. The uni ta ry  normal  vector n on F points  to the 
exterior of D. The scatterer can be either sound-soft or sound-hard.  Thus,  
the scat tered wave is solution of the following Helmholtz equat ion problem : 

Au  + k2u -- 0 in ~2 
Bu = - B u  "n = g i n F  
ou "k O" 1 ,  ~ - ~ - z  u =  ( ~ ) w h e n r = [ x l - * o o  

where B is either the Dirichlet or the Neumann boundary  condition. I t  is 
well-known tha t  u has the following asymptot ic  behaviour  

eikJ=l O( [-~[ 11, (11 u ( = )  = + 

where & = 1~7 is the observation direction. The  function F is called the far- 
field pa t t e rn  of u 

We shall prove the following generalization of Karp ' s  theorem : 

T h e o r e m  1 : 
Let e be any unit vector in R 3 and U the subgroup of orthogonal transforma- 
tions leaving invariant e. The scatterer D is U-invariant i f  and only i f  the 
far-field pattern F is. 

T h a t  means 
D Q={Qx;x6D}:=D, VQ6U 

where DQ is the image of D under Q, if and only if 

F(Q~; Qa) = F(&; a ) ,  VQ • U, Vx, a • S 2 (2) 

where F (k ;  a )  is the far-field pa t te rn  under the incident 

ur(x;  a)  = ~ik~.= 

Proof: 

I t  is clear tha t  only the proof  of  the i / par t  is needed, the only i f  par t  
resulting from the proper ty  of the laplacian ! 

Let us consider the following superposi t ion of plane incident waves : 

u ' (x )  = f u ' (x;  a) ds(a) = 47rsin(klxl) 
J s"  kl=l 
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(Funk-Hecke's formula, cf. Colton and Kress (1992)). Then, the resulting far 
field is the integral of F(&; a),  and the invariance property (2) yields 

F(Q&) = F(k), Vk E S 2, VQ e U (3) 

Now, one can recover the scattered wave u from F by the Atkinson-Wilcox's 
expansion (Atkinson (1949), Wilcox (1956)) : 

e i"" F.(a, ~c) 
= 7 (4) 

n>_0 

where the series is uniformly convergent for (4, r) e S 2 × {r _> a'}, for all 
£ > a where D C {x _< a}, and the functions Fn verify the following identities 

i)  F0 = g (5) 

1 
ii) 2i~Fn+l = nFn + ~ A * F n  (6) 

n + l  

where n _> 0 and A* is the Laplace-Beltrami operator on S 2. 
Taking a system of axis with e as the 3rd unit vector, and using the 

associated spherical coordinates : 

41 = sinScos~ ) 
42=sinOsin991 ( 0 < / 9 < 7 r ,  0_<~o<27r) 
&3 = cosO 

the invariance property (3) is simply expressed as 

F(4)  = F(O) 

for some function F. Now, since 

A*--  1 __02 _ _ _ _ 1  O (sinO ff---~) 
sin20 Oqo ~ + sinO OO 

it follows that  all the functions Fn are solely functions of 0, then independent 
of &l and ~2. From this and the expansion (4), one sees that  for {Ixl _> a'}, 
u is a function of (Ix'l,x3), where x' = (xt,x2). The same is then true for its 
analytical continuation into I20 { Ix l < a'}. Applying the boundary condition 
on F = OD, one gets the relation (Ix'l = constant) on the intersection of F 
with any horizontal plan {x3 = constant}. QED 

3 T h e  E l a s t i c  P r o b l e m  

We consider an homogeneous isotropic elastic medium, with density p > 0 
and Lam6 coefficients A, # > 0. Consider the following scattering problem: 
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{ ~ u  = /~Au + (A +/~)V div u + pw2u = 0 in ~2 (7) 

Bu = - B u  ine = 1 g in F (8) 

1,4 = o( ); 

lit(u).& - i W u  I = 0(1) when r --- I x l  --,. o o  (9) 
r 

where u inc is the incident wave, W is defined by (cf.Kupradze et al. (1979)) 

and the boundary conditions (8) is either the Dirichlet (13u = u, scattering 
by inclusions) or the Neumann one (Bu = cr(u).n,  cavities problems). 

The problem is well-posed and a simple application of Green's formula 
allows us to show that u can be extended to a distribution u0 of R 3, null in 
D, verifying 

.A,.,uo = Tr(u) (10) 

where Tr(u) is a distribution with support on F defined by Maxwell-Betti's 
formula 

< Tr(u), ¢ > =  f r  (a(¢)n.u - a (u)n .¢)  ds, V¢ E Z)(~3) 3. (11) 

It is well-known that the elastic scattered wave has the following asymp- 
totic behaviour at infinity: 

u ( x )  ei~vJXJ p ^ ei~.l~l s ^ 1 
F (x) + - - ~ F  (x) + O ( ~ )  (12) 

where the elastic farfield patterns FP(o) and FS(O) are respectively a vector 
parallel and a vector orthogonal to 0. More precisely, using (10) and applying 
the classical decomposition of elastic waves to the fundamental tensor of 
Navier equation (7), it was proved in Alves and Ha Duong (1996) that the 
elastic scattered wave can be recovered from the far-field patterns by the 
following Atkinson-Wilcox expansion formula 

u ( x ) -  e'~Prr Z Fv(~)r - - - g - - +  e'~'r-r ~ F~(~)r n (13) 
n > 0  n > 0  

where the series converge absolutely and uniformly as for the expansion (4), 
and where the F W (n _> 1) can be obtained by recurrence from F W = 
F w, (W = P, S) by the formula: 

1 • w 2i~wF~W+a = n F  W + - ~ - ~ A  F~ Vn >_ O, W = P, S (14) 
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This first order recurrence is the same as in the acoustic Atkinson-Wilcox 
expansion, while in Dassios (1988), only second order (and much more com- 
plicated) recurrence formulas were obtained. 

In the following, we will note by FW(.; fl, a )  the far-field pat terns  of the 
scattered wave under an incident plane wave uI(x; fl, o 0 = fie ~'~'~'~ with a as 
the incidence direction and fl as the polarization direction, which satisfy the 
condition 

fl = a if a = ap  and fl A_ a if a = a s  (15) 

Also, the subscript F will be added to F w when needed. Now, from the 
isotropy of the medium, one has 

F~r(Q8; Qfl, Qa) = QFW (8; fl, a), 

VQ E U0 ~/0 E S 2, and V fl, a satisfying (15) 

where U0 is the orthogonal group. Then, if the scat terer  is invariant with 
respect to a subgroup U of U0, one gets 

F w  ( QO; Qfl, Qo~) = Q F w  ( O; fl, a) (16) 

VQ E U v0 E S 2, and V fl, a satisfying (15) 

Naturally, we want to prove the converse of that .  Let  us begin with the 
simpler case of a P-incident wave. 

4 T h e  P - i n v a r i a n c e  t h e o r e m  

T h e o r e m  2 I f  for all P-wave incidence, the far-field patterns F P and F s 
are invariant with respect to the orthogonal group, then 1" is a sphere. 

Proof 
Let  u z 'P  be a superposition of the plane incident P-waves, defined by 

uZ'P(x) : ~ 2 u ' ( x ; a , ~ ) d s ( a )  = ~s ae'~V~'= ds(a) (17) 

Using spherical coordinates to calculate the last integral, one gets the follow- 
ing formula, just  like the Funk-Hecke formula 

4 i r~  . 
=  (s. avl=l - a P l = l c o s a p l = l )  (18) 

On the other hand, by the invariance hypothesis, one gets with W = P, S 

QFW'P(&) = Fw'P(Qk) VQ ~ U0 V& e S 2 (19) 
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Now, since FP, P(~c) --- C(~)&, where C is a scalar function, (19) implies tha t  

: C(Q ) VQ e Vo w e s 

which means that  C must be a constant. While since FS,P(Sc) is orthogonal 
to k, it must be null. Indeed, if we take two different Q transforming one 
fixed x0 to a same x, a rotation around a line passing by O and a symmet ry  
with respect to a plane, we obtain from FS, P(&o) two opposite images for 
Fs,P(~) .  So that,  using the Atkinson-Wilcox expansion, one sees tha t  the 
scattered wave is of the form 

_e i~Plxl ^ 
= c' x (20) 

Writing the homogeneous boundary  condition for u r,P + u, one finds an 
equation for Ix I to satisfy on F. This is obvious for the Dirichlet condition. 
For the Neumann one, we can write 

vCx) = + = 

and after some calculations, 

er(v) .n(x)  = 2 # ~ ' ( I x l )  + n(x){(3A + 2/~)~o(Ixl) + AIxI~'(Ixl) 

And the same conclusion follows. 

Remarks 
1/ Incidentally, one sees how to create an incident wave such that  the 

scattered wave (by a sphere) is a pure pressure wave. The author don ' t  know 
if this result was known, neither if it is possible to do that  for other geometry 
of the scatterer. The question of generating a pure pressure or shear outgoing 
wave is much easier if we were working with elastic waves created by sources 
rather than with scattering by obstacles, that  is, if we consider the solutions 
of Navier equation with a right hand side and no boundary  conditions in all 
space. See (Alves and Ha Duong (1996)). 

2/  We could use the same method in section 2 to prove an invariance 
theorem for axisymmetric scatterer. However, one can see later tha t  such an 
invariance theorem will be introduced naturally in the S-incidence case, so 
that,  to avoid repetition, we reserve the treatment of axisymmetric scatterer 
for this case. 

3 /  It  is clear from the proof that  our theorem concerns the invariant 
property for incident waves with a fixed frequency. 

5 T h e  S-invar iance t h e o r e m  

T h e o r e m  3 I f  for all S-wave incidence, the far-field patterns F P and F s 
are invariant with respect to the orthogonal group, then F is a sphere. 
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Proof 
1/ We first note tha t  it is NOT possible to use the superposition of all S- 
incident plane waves 

uZ(x;fl ,  ~) = fie ~s~'= with/~ _L 

because when one integrates this uZ(x;/Y,a) on {(a, fl) E S 2 x S2;fY _L a},  
the result is null ! We chose indeed the following S-incident plane waves 

u I  (=; = A 

where f~0 is a fixed unit vector. The vector product  f~0 A a is no more an unit 
vector, but  clearly uz(. ;  c~) remains a shear plane wave. Now, the superposi- 
tion of uZ(.; a)  gives the following incident wave 

ul'S(x) = J~s2 fl0 A a e  i ' s ~ ' =  ds(c~) 

and as in (17 and 18), one gets 

_ -  ^ 

where 
4i7r . 

= - ' sl=lco ,,sl=l) 

2 /Now,  what about  the invariance of the far field pat terns  with these incident 
waves ? We note that  since 

Fw(:~) = f Fw(&; a, flo A a) ds(a) 
,Is 2 

then 

QFW(&) ]s~ FW (Qk; Qa, Q(flo A a) ) ds(a) 

From an elementary algebra result : 

Q(flo A a) = (detQ)(Q~o A Q~) 

Thus, we have only the following invariance proper ty  

QFW(&) = FW(Q&) V& E S: ,  VQ E U (W = P o r S )  

where U designates the set of orthogonal transformations Q which leave in- 
variant the vector f?0, and with detQ = 1, i.e. for the subgroup of rotat ions 
around/30, This is why we have to deal with the axisymmetric case here ! 
3/ Let 's  consider a system of axis with ~0 as the 3rd vector of the basis. 
Then, from the invariance property (16), the P-far field pa t tern  is of the form 
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FP(x)  = C(xa)& where C is a scalar function. Using spherical coordinates, 
one can write 

( sinOcos~o 
FP(&) = A(O) singsin~o| , 

cow ] 

and a simple calculation yields 

A*(FP)(&) _-- ~1(0)~ ~- ~1(0)e3 

From this and the recurrence formula (14), it follows easily tha t  the P- 
coefficients of the Atkinson-Wilcox expansion can be writ ten as 

So tha t  the P-par t  of the scattered wave is of the form 

uP(x) = ~l([x'[, x3)~ + ~2(1='1, =z)ez 

(first, out  of a sphere containing the scatterer by the Atkinson-Wilcox expan- 
sion, then out of the scatterer itself, by an analytical continuation argument 
as in theorem 1). 

Now, if one writes the S-far field pat tern  as 

Fs(&) = Fo2(0,~o) , 
Fo~(O, ~) 

then, from the invariance property 

F01 (0, ~) = cos~Fol (0, O) - sin~Fo2 (0, O) = cos ta  (0) - sin~#(O) 
Fo2(0, ~) = sin~Foi (0, O) + cos~Fo2(O, O) = sin~A(O) + cos~vl~(O) 
F03(O, ~o) = F03(O, 0) = 7(0), 

(where the functions A and /z  satisfy 

sinOA(O) + cos07(O ) = 0 

because of the orthogonality of FS(&) with &, but  this relation shall not  be 
used in the following). Consequently, one gets 

A*(FS)(&) = cosgoXi(O) + sin~oYi(O) + Zi(0)  

where )(1,Y1 are orthogonal vectors in the {el, e2} plan and 21 is propor- 
tionnal to the vector e3. Using again the recurrence formula (14), one sees 
tha t  the S-coefficients of the Atkinson-Wilcox expansion can be wri t ten as 

FnS(&) = cos~oXn(O) + sin~Y,~(O) + Zn(O) 
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where X,~,Yn are now two vectors no more necessaryly orthogonal in the 
{el, e2} plan and Z,~ is proportionnal to the vector e3. We obtain finally the 
S-part of the scattered wave as 

US(=) = XlXl( I= ' I ,  =3) + =z) + x3(l='l, =3) 3 

where X1 and X2 are vectors in the {el, e2} plan, and X3 a scalar function. 
We conclude as in theorem 1 that  the scatterer is invariant with respect 

to the subgroup U of rotations around/30. (As for the P-incidence case, it is 
obvious for the Dirichlet boundary  condition, while the calculations are more 
involved in the Neumann case). Since the vector/30 is given arbitrarily, the 
theorem is proved. 

Remarks 
1 / A s  it was already noted, the above proof yields the following theorem for 
axisymmetric scatterer : 

T h e o r e m  4 : 
Let e be any unit vector in R 3 and U the subgroup of orthogonal transforma- 
tions leaving invariant e. The scatterer D is U-invariant i f  and only i f  the 
far-field patterns F P and F s are, for S-incident plane waves/3e i~sa'x with 
one frequency ~ and all ((~,/3) such that/3 _L ~. 

A similar theorem can be formulated for P-incident waves. 

2/  It is also worth noting that  we have only to suppose the invariance hy- 
pothesis for one type of plane incident waves (either P or S waves), while in 
Martin and Dassios (1993), the authors obtained their conclusion with the 
invariance hypothesis for both  types of plane incident waves. 

3/  Finally, it appears clearly in the proof tha t  it cannot  be generalized to 
lesser symmetric scatterers. In this case, a different approach, like the one in 
Ha Duong (1996) for acoustic scattering problems, should be adopted. 
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Abs t rac t .  Radar identification is often based on the study of the so-called reso- 
nant frequencies. But no inverse problem can emerge from this since the resonant 
frequencies do not uniquely determine the obstacle. We propose to consider also the 
eigenfunctions associated with the resonant frequencies. We first show the unique- 
ness of our inverse problem : the resonant frequencies and the associated eigenfunc- 
tions uniquely determine the obstacle. Then the stability of this problem is shown. 
Finally some numerical examples of the inversion are given. 

1 Introduction 

The problem we shall consider here is the identification of remote targets 
via radars. Classically, target detection is based on the Radar Cross Section 
(RCS) which indicates how much a target radiates in a given solid angle. 
The RCS of an object depends on both the altitude of the object and the 
orientation of the object. Accordingly, it is almost impossible to interpret the 
RCS for the identification of targets. 

An alternative approach has been developed in the early 1970s, namely 
the Singularity Expansion Method (SEM) [Baum 1976]. It consists in com- 
puting the resonant frequencies of a target from the transient response. The 
scattered field measured on the antennas is composed of two parts: first we 
have the direct reflection of the incident field on the obstacle. After this di- 
rect reflection, some waves are sticking around the obstacle. These are the 
so-called "creeping waves" and correspond to the second part of the signal: 
the scattered field has then an exponential decay with respect to the time. 
The rate of the decay in time can be interpreted by some complex num- 
bers called "resonant frequencies". It turns out that  the resonant frequencies 
(or poles) do not depend neither on the altitude of the target nor on the 
orientation of the target. Henceforth, poles appear as a powerful tool of char- 
acterization of a target. Unfortunately, from a theoretical point of view, there 

This work has been carried out while the author was visiting the University of 
Delaware, USA. 



170 

is no uniqueness result on the reconstruction of an obstacle from its poles. 
In fact, it is quite clear that  the poles of an obstacle do not uniquely deter- 
mine the shape of this obstacle. Thus the use of resonant frequencies for the 
inverse obstacle problem does not seem to be at tractive any more. However, 
engineers are using poles for identification in the following way: if the tar- 
get is assumed to belong to a restricted class (or catalog) of scatterers (for 
instance the class of all airplanes), then one can identify the target just  by 
comparing the poles of the target  with that  of all the objects of the class. 
The main limitation of this method lies in the fact that  it cannot be applied 
to squadrons of airplanes. The resonant frequencies of a cluster of different 
obstacles depend on the shape of each obstacle as well as on the relative lo- 
cations of the obstacles. Since these relative locations are arbitrary,  the case 
of multiple-targets cannot be taken into account in a catalog. 

The problem of the identification of a target can be viewed as an inverse 
problem using the transient response. Basically, there is only one shape re- 
construction technique in the time domain: the tomography. The frequencies 
used in remote radar detection typically belong to the slab [100 MHz, 400 
MHz]. Hence the resolution of the signal in term of tomography is bracketed 
between 0.75 m and 3 m. Clearly, this is not enough for the reconstruction 
of missiles or airplanes of medium size. 

Instead of studying the whole transient response, we propose here to focus 
directly on some particular creeping waves. More precisely, the idea of this 
work is to consider one resonant frequency k and one associated eigenfunction 
(e.g. the field scattered by a special creeping wave). This eigenfunction is 
solution to the Helmholtz equation at the frequency k. The use of resonant 
frequencies enables us to transform the inverse problem in the time domain 
into an inverse problem in the frequency domain. In the frequency domain, 
there exist some numerical methods that  reconstruct the obstacle when the 
frequency belongs to the resonant region of the obstacle. By adapting one 
of these methods to our problem, we will be able to reconstruct (and thus 
identify) the target. 

In section 2, we define the notion of resonant frequency and eigenfunc- 
tion. We justify how these two quantities can be deduced from the transient 
response in Section 3. In addition, we review the theoretical results on the 
reparti t ion of resonant frequencies that  can be useful for our inverse problem. 
Then the inverse problem is stated in section 4. To justify the introduction 
of this inverse problem, we first show its uniqueness: one resonant frequency 
plus one associated eigenfunction uniquely determine the obstacle. The fol- 
lowing section is devoted to showing the stability of this inverse problem. The 
method we use can be carried over almost unchanged to the classical inverse 
obstacle problem referred in [Colton et al. 1992]. In particular, we improve 
the stability estimate obtained in [Isakov 1994]. Finally, we show in section 6 
how to use the method described in [Angell et al. 1995] to our case. We give 
some numerical examples that  indicates the potentiali ty of this method for 
radar  identifications. 
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2 D e f i n i t i o n  o f  t h e  R e s o n a n t  F r e q u e n c i e s  

Let 12i be an open bounded domain and 12 its complement in ]R N. The 
outward normal to F = 012~ is denoted by n. We assume that  F is twice 
differentiable. 

Let w(t, x) be the acoustic field at the time t and the location x C IR N. 
Then w satisfies the wave equation in the open space 12 : 

o2 ~( t,x _ ]R+ [ ~ - -  A w ( t , x ) + - - 0 ,  in ×12 
w(t,x) = 0 ,  o n l R  x P  

| w(0, x) = f 0 ( x ) i n  12 (1) 

[ °~(o°t'x) = f l ( x ) i n  t2 . 

(i 01) is the initial value for this Cauchy problem. Here we have consid- 

ered the Dirichlet boundary condition on F.  
After the incident wave has been reflected on a non-trapping obstacle, the 

energy around the obstacle as a function of the t ime decays exponentially 
when the dimension N is odd. More precisely, in each compact set B C IR N 
(N odd), we have [Lax et al. 1967] 

~ j ( x )  2 / B w ( t , x ) - - ~ e - ~ k J '  dx<_C(J) e '~(~J+l'~ (2) 
j = l  

where kj are the resonant frequencies and uj are non-triviM solutions to 

Auj + kgu j = 0 ,  in12 
u j : O ,  o n r  (3) 
uj outgoing 

There  are a countable number of poles. Moreover, their imaginary part  is 
negative. In (2), we have assumed that  the poles are numbered in such a way 
that  

0 < ~(kl )  <_ ~(k2) <_ . - -  ~ - ~  • 

Note that  this is possible at least when the obstacle is non-trapping [Lax et 
al. 1967]. From the exponential decay of w and the Huygens' principle, uj is 
shown to have an exponential growth 

u j ( x )  Ix,-~o e '~j'x' u~O(~) ~ x 
Ixi(N_l)l~ , = Ix--~ , (4) 

where u ~  is called the far field of uj. In (3), the requirement that  uj is 
"outgoing" corresponds to the fact that  the creeping waves are leaving the 
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obstacle. We now make this more explicit. To this end, let us consider for 
~(k)  >__ 0 the following problem 

Au + k2u = 0 , in H~o~(¢2) 
u s = g ,  inH1/2(F)  

, lim~--~oo r ~=~(~ - zku) = 0 
(5) 

It is readily seen that  this problem has a unique solution whenever ~(k)  _> 0 
[Colton et al. 1992]. Hence the mapping g ~-~ u defines an operator  R(k).  
This operator  is holomorphic in ~(k) > 0 and has a meromorphic extension 
to ~(k)  < 0 [Poisson 1992]. Using integral equations [Colton et al. 1983], one 
can explicit the extension of R(k).  The operator  R(k) has at most a count- 
able number of poles (resonant frequencies) in ~(t:) < 0. Consequently, the 
resonant frequencies are the complex numbers kj for which the problem (3) 
has non-trivial solutions. In problem (3), by "outgoing" is meant an extended 
solution defined by R(k).  

The relation (2) which states that one can expand the solution for large 
time in term of the singularities of the problem is quite classical in physics. 

3 R e p a r t i t i o n  o f  t h e  R e s o n a n t  F r e q u e n c i e s  

Assume that  the field w(t ,y)  is measured by only one radar (located at the 
point y) in a fixed range of time t E [T0,T1]. By virtue of (2), only the 
resonant frequencies can be computed. The factors u j (y )  alone do not give 
further information. The number J of poles one can estimate depends on the 
quality of the measurements (level of noise, . . .) .  kl, ".., k j  are computed by 
minimizing the defect 

T1 W(÷,\~ J 2 

IT, y) -- E cje-'~'J' dt . 
I j ~ - l  

If the field w(t, y) is known without error for all t > To then one can clearly 
compute all the resonant frequencies. 

As already seen in the introduction, we cannot reconstruct an obstacle 
from its resonant frequencies (see [Zworsky 1994] for some hints on this point). 
Nevertheless, since the creeping waves are traveling around the obstacle, we 
expect that  the resonant frequencies characterize some geometrical quantities 
of the obstacle. Many researches have been carried out on the reparti t ion of 
the poles (see [Melrose 1995] for an overview). We give two lemmas that  
state a relation between the repartit ion of the poles and some geometrical 
quantities of the obstacle. 
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L e m m a  1 ( T h e o r e m  5.5 in [Lax e t  al. 1969]).  

The counting function on the purely imaginary axis is defined by 

Ni(cr) = #{k  pole,  k E ~]R and Ikl < a} . 

In odd space dimensions, there are infinitely many poles on the purely imag- 
inary axis, and more precisely 

lim inf ~ _> (N 1)-----~ \ 3'0 / ' 

where R1 is the radius of the largest sphere contained in gli, R2 is the radius 
of the smallest sphere containing g?~, and 7o is a known constant. Moreover, 
if  f2i is star-shaped, then 

NI(~ r ) 1 ( R 2 )  N-1 
lim sup ~ < - 

L e m m a 2  ( T h e o r e m  2.4 in [Lax et  al. 1971]). 
Assume that R2 is the radius of the smallest sphere containing ~?i. Then in 
three dimensions, there is no pole in the disk of center - ~  and radius 1 5-~7 " 

Let us assume that the following limit exists 

1 
N--1 NI(~r) ] 

RF =3'0 ( N -  1)[2i ln  crN_ l j  

Then Lemma 1 shows that R1 < R v  <_ R2. For a given repartition of the 
poles, let p be the smallest number such that  there is no pole in the disk of 
center - ~  and radius ~ .  Then Lemma 2 yields R2 _> p. Hence from R r  and 
p, one cannot directly give an upper bound of R2. However, in practice, if we 
are interested only in a restricted class of scatterers, R r  and p are expected 
to give a good idea of the size of the obstacle. Furthermore, since the radar 
provides the location of the object, we assume we can a priori bound the 
object in a fixed sphere. 

This will be very useful for the study of the inverse problem we consider 
now: the reconstruction of the shape of an obstacle using several resonant 
frequencies and associated eigenfunctions. In practice, if the scattered field is 
measured on a sphere Smea, for t E [T0,T1] then the poles k l , . . . , k j  and the 
value of the associated eigenfunctions u l , . . . , u j  on S ~ s  are determined by 
minimizing the functional 

l l  w(t, J 12 x) - uj(x) 
j = l  

dt dx , 
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where Y is fixed in advance. In next section, we will show that  only one res- 
onant frequency and one associated eigenfunction are enough to reconstruct  
the obstacle. Since the sphere S . . . . .  is supposed to be far away from the 
target (for remote radar applications), ul on S . . . .  is almost equal to the 
far field up to a multiplicative factor. Hence from now on, we assume that  
we have measured one resonant frequency and the far field of one associated 
eigenfunction. 

4 U n i q u e n e s s  o f  t h e  I n v e r s e  P r o b l e m  

There is a classical result about uniqueness, which states that  for the Dirichlet 
inverse obstacle scattering problem using plane waves, a finite number of 
far fields for different frequency (where this finite number depends only on 
the size of the obstacle) uniquely determine the scatterer. The first proof of 
uniqueness in inverse obstacle scattering was due to Schiffer and had been 
improved in [Colton et al. 1992]. This is the starting point for the proof of 
the uniqueness in our case. 

T h e o r e m  3. Let k E C (with ~(h) < O) and u °~ E L~(S) with u ~ ~ O. 

Assume that $2~1) and {/}2) are two sound-soft obstacles having the same 
resonant frequency k and such that u ~ is the far field of two eigenfunctions 
associated to k for the two obstacles $2}1) and #2} ~). This means that for 

j = 1,2 there exists a function uj E HIo c IR \$2~ such that 

Auj  + k2uj oDO#)} in IRN\D} j) 

u j  = 0 ,  on  (6) 

u# outgoing with u j (x)  Ixl--*~ e,~,x, u ~ ( ~  ) x = T-~ IxI(N_I)/2 

Then $2}1) = $2~2). 

The space of all the eigenfunctions associated to a pole is a linear vectorial 
space of finite dimension. We would like to make it clear tha t  in last theorem 
any non-zero eigen-far field u ~ provides the stated uniqueness. 

P r o o f  o f  T h e o r e m  3: The proof is done by contradiction: we assume that  
$2~1) ¢ $2}2). Let S be the unit sphere. Moreover, we set Fj = 0#2} j). The  

unbounded component of IRN\(~2}I) U $2}2)) is denoted by Y2*. We also set 

$2, = IRN\$2 *. Let Y20 be a connected component of $2,\$2}1). The boundary  
of $2o is 052o = F -  U F + where F -  = 052o n F1, and F + = 052o n F2. 

Let u# be defined by (6). From Theorem 2.13 in [Colton et al. 1992], 
the far field uniquely determines the field outside a big ball containing the 
obstacles, and thus by analytic continuation the field in the exterior domain 
([Colton et al. 1983]). Hence ul = u2 in $2*. The rest of the proof is organized 
in three steps. 
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- First suppose that  f2} 1) and f2} 2) are disjoint. Let u be the restriction 

of u2 to f2} 1). u is clearly a solution to the Helmholtz equation in ~2} 1). 
Moreover, since ul = u2 in tg*, we conclude that  u = Ul = 0 on/"1. Since 
k is a resonant frequency, the imaginary part  of k is strictly negative. 
Hence, by Lax-Milgram's lemma, the interior problem 

Au + k2u = 0 ,  in t2} 1) 
u = O ,  o n Q  

is well-posed, so that  u _= 0 in f2} 1). By analytic continuation, u2 vanishes 

identically in ]RN\~2} 2), which contradicts the fact that  u °° ~ 0. 

- Thus $2} 1) N $2} 2) # (~. Here we assume that /2} 1) A/2} 2) • 0. Thus ~20 # (~. 
Let u be now the restriction of ul to f20. The function u satisfies the 
Helmholtz equation in ~o and we have u = 0 on F - .  In addition, ul is 
equal to u2 in f2*. Consequently, since c9~20 N 0f2" = F +, u = u2 = 0 on 
F +. Hence u is solution to the homogene Dirichlet problem in ~20. With 
the same argument as before, we attain a contradiction. 

- It remains to consider the last case when ~ 1 )  and ~2 )  are just tangent.  
We again have the same contradiction by using the arguments of last step 
to the domain ~2~ 1). 

This concludes the proof. • 

5 S t a b i l i t y  o f  t h e  I n v e r s e  P r o b l e m  

Inverse obstacle scattering problems are ill-posed in the sense that  a small 
error in the measurement may imply a large error in the reconstruction. This 
is contrary to the idea of continuity (i.e. stability). The numerical resolution 
of a problem can be reasonably performed only if the problem is stable. 
Otherwise, the combination of the initial error on the data  and the roundoff 
errors may overwhelm the final result, leading to something which has nothing 
to do with the real solution. 

In fact, by adding some a-priori information, the reconstruction becomes 
stable. The first result on stability for inverse obstacle problems has been 
shown by V. Isakov [Isakov 1992, Isakov 1994] who proved that  stability 
holds if we assume that  the obstacle lies inside a fixed compact set. 

In this section, we restrict ourself to the two dimensional case. We denote 
by S the unit circle. We will write a point x C ]R 2 using either its Cartesian 
coordonates (Xl, x2) or its polar coordonates (8, r). In the following, if 0 E 
[0, 27r], we wilt denote by 0 the unit vector (cos 0, sin 8). We will show the 
stability of our inverse problem among all the obstacles whose boundary 
belongs to a reasonable class A of closed surfaces. Let us denote by A the 
class of all analytic boundaries F such that  
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(i) F is star-shaped with respect to the origin and is given by 

r = {r(O/O, 0 [0,2 1} 

(ii) the radius r satisfies Ri < r(0) < R2, VO E [0, 2w], and 

I l r l l c = ( [ 0 , 2 ~ ] )  : =  max [r(0)[ + max I / ( 0 ) 1 +  max Ir'(0)[ < Cr 
0•[o,2,q 0•[0,2,q 0•[o,2,~] - 

(iii) the curvature C(O) at the point r(O)O satisfies 

o <_ c(o) _< c . . . .  v0  • [0, 2~1 .  

In the following, CA will stand for any constant which depends only on the 
class A, i.e. on the constants R1, R2, Cr and C . . . .  More generally, we denote 
by C a generic constant, and by z] a generic number satisfying 0 < ~ < 1. We 
also introduce a compact fixed set Z of C-  = {z • C, ~(z) < 0}. 

Remark that,  as far as uniqueness is concerned, the restriction to the 
class A implies that  only the second case in the proof of Theorem 3 has to 
be considered. We now give the stability theorem. 

T h e o r e m 4 .  Let £2} l) and ~2} 2) be two obstacles whose boundaries (denoted 
by F1 and 1"2 respectively) belong to the class A. Let kj • 2 be a resonant 

frequency associated with ~2} j). Let u ~  • L2(S) be such that there exists a 
function u i solution to 

2 U) Auj  + k g u  j = 0 in IR \[2 i 
~ uj = O on Fj 

I uj is outgoing,  with uj(x) I x l - ~  g~:j,xl u?(:~) (7) 

t Ilu?ll.( )= 1 N 

We denote by d(Fi, 1"2) the Hausdorff distance SUpxl•r, infx:er~ IX1 --X2[. 
Then there exists a constant C(kl ,  u ~ ,  A, S )  which depends only on ki ,  u ~ ,  
A and ~ ,  ~ and a real number 0 < ~ ( k l , u ~ ,  A, 2 )  < 1 depending only on kl ,  

u ~ ,  A and 2 ,  such that for any bounded domain ~2} 2) we have 

d(/'l,r2) ~ C ( k l , u F , A , 2 )  £ ~k l 'ur 'A ' -~ )a (e )  , (8) 

e : =  Ik~ - ~1 + IluF - uCIIL~(S), and t~(e) is given by 

log 1 

where for y and x real, the real number lxy(x) is defined as the solution z of 
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One can easily show that the right hand side of (8) tends to zero when e 
tends to zero. In [Isakov 1994], the following stability estimate for the inverse 
obstacle problem described in [Colton et al. 1992] is shown 

C(A) 
d(rl,  &) < 

K,(e)llog el " 

Our estimate is better  since we get rid of the logarithm function. But on the 
other hand, the constants we have in Theorem 4 depend on kl and u ~ .  This 
is not a flaw and is enough in practice. 

First we have to prove that  (7) has a sense. The problem (7) corresponds to 
(3) plus a normalization condition on u~ .  The space of all the eigenfunctions 
associated to a pole forms a vectorial space of finite dimension. The norm 
of the eigenfunctions can be arbitrari ly large or small. Hence, if kj is a pole 
of Fj, the set of all solutions to (7) is not empty. To have some stability, we 
need to have a substantial grip on the norm of the eigenfunction uj.  This is 
why we have introduced the normalization condition on the far field u ~ .  

L e m m a  5. For any domain Y2} j) (with Fj = 0~2~ y) e A) and any solution uj 
to (7) (for some ky E 2) ,  we have the uniform bound 

IluJl[c~+,,(s.\~?)) < CR,A.z , 

for some 0 < q < 1 and R > R2. BR is the ball of center 0 and radius R. 

The proof of this lemma is almost similar to that of Lemma 2 in [Isakov 
1992] and thus is not reproduced here. 

We use the same notation as in Section 4. Let ~0 be the connected 
o \o(~) component of o~,\oo~ . We assume that  the Hausdorff distance d ( F - ,  F +) 

is attained in J2o. 0J20 is composed of two parts: F -  := (0J20 N T'I) and 
F + := (0Y20 ~F2) .  Since F1 and/-1.2 belong to A, F ± are described by F ± = 

{r±(O)O, OE [O~,Obl} for some O~ and Oh. 

L e m m a 6 .  We have 

d ( F - , F  +)< max (r+(O)-r-(O)) < \  v ~l~-r~/-g -~x I d ( F - ' F + ) "  
- o e ~ o , , , O , , l  ] 

This lemma is a simple consequence of the definition of the Hausdorff 
distance. Its proof is omitted. 

Let us fix P >_ 2. We set p = d ( F - ,  F+) .  By the above lemma, it is clear 
that  the set J2p := {(0, r) e J20 , r + ( 0 ) - r _ ( 0 )  > p~} is not empty. ~ p  is 
probably not connected: J2p = t&J2p, z, where J2p, z is a closed and connected. 
Among the sets J2p,~, there is one (labeled J2,~) in which max0e[o,,,0,,l(r+(0)- 

r_(O))isattained. HenceJ2,~={(O,r) E J~o, 0 E [ 0 ~ , 0 b ] } , f o r s o m e 0 ~  > 0~ 

and 0b < 0b. For the proof of Theorem 4, we need the following lemma. 
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L e m m a 7 .  Assume that w • H](~2o) n C~(S~o) satisfies A w  + kl2w = S in 
~o, with f • L2(/20). Then w • H2(~2,~) and 

IlWllH=(a,,.) --< C_U,A (ltfllL=(~o) +llWIIH,(ao)) - 
P 

P r o o f  : This  result  is essential ly a classical regular i ty  result  on weak solut ions  
of  elliptic equat ions.  Let  P '  > 2P.  We wri te  ~,,~ = ~ P '  tO ~2,~, where  we have  
set a2 P = {x • a2,~, dist (x,  0a2o) _e_ ~ P' _> p, } and  J2,~ = ~2.~\~.~ .  

- A bound  of the  H u norm of w in g2 P '  is p rovided  by T h e o r e m  8.8 in 
[Gilbarg et al. 1977]: 

CA (IIFIIL~(Oo) +llWllH~(Oo)) ilWllH~(~') < 7 

T h e  factor  ca  cor respond the  C1(~20) no rm of a cut-off  funct ion  { • 
p 

p ,  
C~($2o) t ha t  is equal  to 1 in /2 P ' .  Since dist (~2 m ,0Y2m) = p2-r, such a 
choice of { is possible. 

- We define a cover of O,~: ~2.~ = [..J; (B(z ; ,  uP, ) N m),  where  the  union 

is finite and zt • 0a9.~ N 0~20. Each  set B(z l ,  3-2-uP,) n ~m~ is t r a n s f o r m e d  

into a subset  of IR~_ = { ( x l , x 2 )  • IR 2 , x2 > 0}. F rom T h e o r e m  8.12 in 
[Gilbarg et al. 1977], we have 

Ilwll.:(.~,) <- -~ (IIFIIL~(~o)+llwllx~(ao)) 
T h e  fac tor  - ~  now comes f rom the fact  t ha t  the  radius  of  the  ball  is ~ p 2 P '  " 

L e m m a S .  Let F~ := F + N~ZT/m. For all u E HI(~o ) ,  we have 

II<lL2(r,:) < -g~ll~ll.l(. ). 
P r o o f  : F i rs t  consider u • C1(~0) .  For any  posi t ive funct ion w • C l ( f2m) ,  
we have for r_  (0) < r < r+(8)  

/ ~  Ow(O,t) d t ~ + ( o )  Ow(O,t) 
w(O,r_(O)) <_ w(O,r) + _(o) Or < w(O,r) + r_(o) Or dt . 

Mult ip ly ing  this by X/r_ (8) 2 + r'_ (8) 2 and  in tegra t ing  over  $2,~, we get 

jf"(r_(o) - r+(e)) w(O, r_(O))\/r_(O)~ + (0)2d0 T I_ 
~ ,  fl+(o) (e)u + r' 

< w(O, r) k / r -  - rdOdr 
,, a~_(o) r 

f°~ f~+(o) . . . .  IOw(e,t) \/r_(o)~ + r'(o)ut~oa t + '-,0o (r_(e)-  I t 
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Thus thanks to the definition of Y2,~ and to L e m m a  6 

p 2 2 I O ~  2 
L2($2,,,.) 

Let us apply this to w = lul ~. Since [~lul~[  < [VIW~[ < IvW ~ + I~1 ~, the 
s ta ted inequality holds for u E C1(~0).  By Theorem 1.4.2.1 in [Orisvard 
1985], C l ( ~ 0 )  is dense in H l ( ~ 0 )  without any assumption on $4. Thus this 
relation is also true for u E H l ( ~ 0 ) .  • 

L e m m a 9 .  We have 

m e a s ( F ~ )  > C A ~ / d ( F - , F + )  . 

This lemma is a consequence of a classical result giving the link between 
the distance between two successive zeros of a function and the ex t remum of 
the function in this slab. 

L e m m a  10. Let ul  be a solution to (7) for j = 1. Then there exists a con- 
s tant  C~1 > 0 and an integer M~ 1 such that for  any interval "y C 1"1 

OUl > 
- ~ n  L~(~) -- C~1 meas (7)  M''~+~ . 

P r o o f "  Assume that  F1 = { r , ( O ) O ,  0 e [0,27r]~. 
% 

- The solution ux satisfies ul = 0 on/ '1 .  Therefore by the Cauchy-Kowalew- 
ska theorem, o~  cannot vanish on "7 C FI,  with meas (7) > 0. Moreover on 
since ~ is analytic o n / ] ,  ~ vanishes (at most)  at a finite number  of On On 

o~l(A points. Set v(0) : -  on ~v, r l (0))  the value of ~ n  on/"1. The function v is 
periodic and analytic on [0, 27r]. By periodicity, v is extended to [ - 2 r ,  0]. 
lvl has only a finite number  p of local max imums  (at tained for 0 equal to 
some values e l , . .  ", ep) on [0, 27r]. We set e0 -- ep - 27r a n d / i  := [e~-l, e~]. 
Since v(e~- l )  and v(e~) are two successive local maximums,  the minimum 
of Iv[ over I~ is at tained at a point 0~ E]e~_l,e~[. Since v is analytic,  the 
Taylor expansion of v at the point 0~ converges for all 0. 

~(0) = ~ ~(~)(0~) (o - o~) ~ 
n! 

n =  M i  

where Mi is the smallest integer n < co for which v('~)(O~) ~: O. Such an 
integer exists since o_~ cannot vanish identically. Hence we conclude tha t  on 
there exists Ci > 0 such that  for all 0 E I i  

I~(e)l > O~le - e~l M' 
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This comes from the fact that  0i is the minimum of I v] over Ii. Let 
M : :  maxiE{1,...,p ) Mi. Then there exists C > 0 such that  

V i e { 1 , - - - , p }  V0C/~ I v ( e ) t > c l 0 - 0 d  M (9) 

- We give without proof two intermediate results. For a fixed integer L, 
and for some positive numbers xl,  ..., XL, we have 

J > xz (10)  

l=l  

For J E ] N *  a n d x > y > 0 ,  wehave  

_ y J  > 2jl_l(x _ y ) 2  . ( 1 1 )  X J 

Let ~/= ( r i (0 )0  , 0 e G} C F1, where G is an interval of  [e0, ep]. By (9), 

i=1 i=1 

Let G~ := G M I~. As the intersection of two intervals, G~ is an interval, 
say [a, b]. 

/a C , Ivl2dO >- C2(0 - Oi)2MdO-- 2M + 1 [(b - Oi) 2M+1 - ( a  - O i ) 2 M b l ] .  

By (10) with L = 2 and J = 2M + 1, and (11) with J = 2M + 1 

a C 2 meas (Gi)2M+l 
[vI2dO > 2M + 1 2 2M 

Summing over i and using (10) with L = p and J = 2M + 1, we get 

f a  C 2 meas (G) 2M+l 
Ivl2dO -> 2M + 1 (2p) TM 

Now we write 

On d'~ _> R1 Ivl2dO -> 2MRIC2+ 1 meaS(2p) TM(G) 2M+l 

Since meas (7) -< CAmeas (G), we have the stated inequality. • 

P r o o f  o f  T h e o r e m  4: The proof is split into four parts. The  first two steps 
are similar to what is done in [Isakov 1994]. The rest of the proof is quite 
different to [Isakov 1994]. 
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- Step 1: From the far field pat tern  to a sphere SR. 
From L e m m a  5, ul and u2 can be uniformly bounded. In [Bushuyev 
1996], the far field ~-* middle field mapping  is proved to be stable in 
three dimensions. This work can be carried over to the two dimensional 
case with complex frequencies. Thus from [Bushuyev 1996] we have for 
R > 2R2 

[lUl -- U21IL2(SR) ~ CR,A,~, 6 ~(e) (12) 

- Step 2: From SR onto 012". 
We denote by E1 the right hand side of (12). One can est imate the error 
of ux - u2 on 0/2" by using the same arguments  as in L e m m a  5 in [Isakov 
1994]. In particular,  there exists 0 < ~ < 1 such tha t  

[lUl -- U2[[CO(OF2*) ~ CR,A,~. e l  ~? • (13) 

- Step 3: Upper bound ofll-~n [IL2(rz). 

We denote by e2 the right hand side of (13). The Hausdorff  distance 
p := d(F1,/"2) between F1 and F.2 is at tained in either one connected 

component  of/2,\~2~ 1) or in one of $2,\J2~ 2). 

(i) A s s u m e  that  it is at tained on a connected component  of J2,\F2[ 1), 
say J?o. Ul is solution to the Helmholtz equation inside J?o. On 0J20 
g = ullono satisfies g = 0 on T ' -  and g = Ul - u 2  on F +. Since 
F + C 0~2", we have by (13) that  Jig[[co(r+) _< e2. The C s norm of a 
function g over a non-smooth boundary  0~20 is defined by 

Ilgll*c,,(o~o) := min IIg*llc~(~) - 
g* EC~(  F2o ) ,  g* IOn() =g 

In our case, we clearly have [[gHco(ono) < Hg[[co(r+) < e2. This com- 
bined with Lemma  5 and some interpolation inequalities (see The-  
orem 1.1.1 in [lsakov 1991]) shows that  there exists 0 < ~/ < 1 
such that  ][gH*c~(on,,) <- CR,A,Se2 v" From Theorem 1.1.1 in [Isakov 

1991], one can extend g defined on 0S2o to u~ defined in ~o such tha t  
C * ][u~]Ic2(no) <- ]]gHc2(ono), where C is independent of the domain 

f20. Hence 

II~TIIH~(no) -< CAIIgll*c~(on4 <--- CR,A,S e2" • (14) 

The function w :-- ux - u~ belongs to H01(~20) and satisfies Aw + 
kl2w =- f in no, where f =- - ( A  + k12)u~. Hence for all v 6 Hi(J?0) ,  
we have a(w,v)  = f ,o  .fV, where a (m,v)  :-- f n o ( V W . V ~ - / ~ 1 2 w ~ ) .  
Hence by Cauchy-Schwarz inequality 

2 ~(- i -~la(w,w))  <_ [k1[l[f[[L~(no)[[wl[n2(no) , ck~ Ilwll~l(~o) _< 

where C~ = I-~(k~)l min(1, Ik~l=). Using (14), we find 

II~llu'(no) -< C~llfllL~(~o) <-- CR,A,~ e~ " . (15) 
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The function U 1 belongs to C2(/20). So does w = U l  - u ~ .  Combining 
Lemma 7 with (14) and (15), we have 

II~IIH~(~.,) --< CR,A,Z--~-  • (16) 

We denote by Fm ~ the surface F + n 0F2m. Furthermore,  we set U := 
Vul .  Lemma 8 is now applied to each component of U. Using (16) 
and the relation ~-~ < IUI, we finally get 0 n  - -  

oUl 
_ CA C c2v (17) <llVll~(~,:)  < ~ 1 1 ~ 1 1 ~ .  ) < ~,~,~--~-.  

On L2(F,~) - -  x/P '" P~ 

(ii) Assume now that  the Hausdorff distance is at tained on a connected 

component of J2.\J2~ 2), again denoted by F20. Then, switching the 
indexes 1 and 2 (also + and - )  in last point, one can show as for (17) 
that  

Ou--A < CR,A,S ~ (18) 
On IIL2(rj,.) -- P~ 

- Step 4: Lower bound and conclus ion of the proof.  

By Lemma 10, that  there exists a constant C~1 > 0 and an integer Mul 
such that  

OUl ~ C~ 1 meas (/~)M.,,,I+½ 
On L2(F,~ ) 

By Lemma 9 and (17), (18) 

C~ICAd(F1,F2)2M,~ + 1 Oul < < C R A , ~ .  
- -  O n  L2(F,~ ) - -  ' d( r l ,  r~)~ " 

We take R = 3R2, so that CR,A,S only depends on A and ~ .  Thus it is 
labeled CA,S. Therefore we have the require estimate with ~/(kl ,u~,A,~)  = 

4r/ • 
2M,,  1 +7" 

6 N u m e r i c a l  R e c o n s t r u c t i o n  o f  t h e  O b s t a c l e  

Let u be a non-zero solution to (6) for the resonant frequency k and the far 
field u ¢~. We wish to reconstruct F from k and u ~ .  The proof of uniqueness 
by Schiffer is constructive and leads to the Kirsch-Kress method [Colton et 
al. 1992]. The method is basically designed for the inverse obstacle scattering 
problem using plane waves, and can be extended to our problem. This method 
consists in two steps : 
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- Step 1: Computation u from u ~ .  
The field u is sought in the form of a single layer potential on a fixed 
artificial boundary 7: 

where the potential ¢ has to be determined and G is the outgoing fun- 
damental solution of the Helmholtz equation. The closed surface ~/must 
lie inside the obstacle £2~ [Colton et al. 1992]. In two dimensions, we have 

(F~¢) (~), where 

1 _ _ , / - ~ k  j< e_,kx.y ¢(y) dv(y) (20) 
(F~¢) (~) -- 2zk Y 2 r  

Therefore ¢ is determined by solving the equation 

F~¢ = ~ on S. (21) 

As pointed out in [Colton et al. 1992], since the kernel of F 7 is analytic, 
this equation is severely ill-posed. This equation is solved by minimizing 
the functional 

# l ( ¢ ; T , a )  : :  [ I F ~ ¢ - u  °° 2 e L=(s) + ~rl~llL~(~) (22) 

t 2 over all ¢ E L2(7). We notice the Tikhonov regularization erm II~llL~(~). 
- Step 2: Determination of F from u. 

The relation (19) now gives u in the unbounded component of ]1{2\7. The 
Dirichlet boundary condition (i.e. u = 0 on f )  enables us to characterize 
F :  

P : { x  E ]1% N / u(x) : 0} . (23) 

From the uniqueness Theorem 3, there is only one closed curve on which 
u vanishes. This step is well-posed but non-linear, and is solved by mini- 
mizing the defect 

over all the closed curves Y. There is no regularization term in #2 since this 
step is well-posed. 

The Angell-Jiang-Kleinman method [Angell et al. 1995] corresponds to 
several iterations of the Kirsch-Kress method. In fact, the Angell-Jiang- 
Kleinman method features an update of the reference curve V from the re- 
construction Y given by step 2. The idea is that  the computation of the field 
is more accurate if the reference curve 7 is parallel to the exact boundary 

P. Henceforth, after the computation of ¢ and Y = ~r (0 )~ ,0  E [0, 27r]~, the 
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surface  ~/ is set  to  a curve pa ra l l e l  to  Y, say "y = c_~4r(8)~, fl E [0, 27r]~. ~ T h e n  
% 

t he  two s t eps  a re  done  aga in  wi th  the  new reference  curve  7,  l e a d ing  to  new 
values  of  ¢ and  T.  T h e  reference curve  "y is then  u p d a t e d .  A n d  so on.  

In  F igu re s  1 and  2, we show two examples  of r econs t ruc t ions .  T h e  use of an  
a d a p t a t i v e  in te r io r  curve ~ / improves  a lot  the  numer i ca l  resu l t s  ( c o m p a r e d  to  
the  K i r sch -Kres s  m e t h o d  in which the in te r io r  curve is f ixed).  We  also no t ice  
the  s t ab i l i t y  of the  a lgo r i t hm to some noise a d d e d  on the  da t a .  

In  m a n y  e x p e r i m e n t a l  devices ,  the  m e a s u r e m e n t  is ava i l ab le  on ly  in a 
l imi ted  ape r tu re .  Th is  is in p a r t i c u l a r  the  case  of r a d a r  a p p l i c a t i o n s  s ince 
the  a n t e n n a s  can be pu t  only  on the  ground .  We are  here  i n t e r e s t e d  in ha l f  
ape r tu r e .  We o b t a i n e d  good  resul t s  in this  case. For  real  f requencies  a n d  
inc iden t  p lane  waves,  l i m i t e d - a p e r t u r e  p rob l ems  a re  very  tough  to  solve. T h e  
e igen-so lu t ions  a s soc ia t ed  wi th  r e sonan t  f requencies  c o r r e s p o n d  to c reep ing  
waves which go a r o u n d  the  obs tac le .  Consequent ly ,  even if the  i n f o r m a t i o n  
is o b t a i n e d  only  in a l i m i t e d - a p e r t u r e ,  these  waves con ta in  the  i n f o r m a t i o n  
a b o u t  the  whole  obs tac le .  

2 , , 

exacl boundary - -  r~ons~ructi~ without ~i~ ..... 1 5 . . . . . . . . . . . . . . . . . . . . . . . . . .  mcc~yuction ~th ~ise ..... 
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- o . 5  

-1 

Fig .  1. The Rounded rectangle obstacle. We present the results obtained with the 
resonant frequency k = 1.547 - 1.347i and the parameter  c~ = 10 -4 in it1. 5% 
of noise in both the resonant frequency and the far field is added for the second 
reconstruction. The error in the first reconstruction is d(F, T) = 7.3%, and the error 
in the second reconstruction is d(F, T) = 18.7%. 
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Abstract. Various approaches to the solution o f  the inverse scattering problem are 
discussed here, and illustrated by selected examples. Inverse scattering, having 
originated with quantum mechanical scattering problems, has more recently become 
of  interest in acoustic and electromagnetic areas, in geophysics as well as in 
oceanography. These topics will be described here both based on general approaches, 
or more specifically as based on the use of  target resonances, or of  surface waves on 
the target. 

1 Introduct ion 

The inverse scattering problem, i.e. the determination of  the character o f  a scattering 
object or medium when the incident signal is known and the scattered signal has been 
measured, had its start in quantum mechanics 1-3 and later on became of  interest in 
radar scattering 4-6, and in geophysical prospecting 7. 8. In acoustic 9q2 and elastic-wave 
scattering 13-14 the interest in this problem is or more recent date. While the most 
general solution of  the inverse scattering problem has spawned a veritable subfield o f  
applied mathematics 15-18 (this also extends to nondestructive testing 19, tomography 2°, 
21 and imag in f  6, 22. 23) often concerned with the solution o f  integral equations 24-25, it 
has been found of  advantage by us 9-1 t, 13.26-29 and by others 5, J2, 14, 30-36, to combine 
purely mathematical approach with an application o f  well-identified physical 
phenomena (the target resonances, in this case), and the use there of  in order to make 
additional headway towards the solution o f  the inverse problem, or even to provide 
shortcuts for the latter 29. The present discussion selects a number o f  representative 
examples from both the general mathematical solutions of  the problem (determination 
of  electromagnetic medium parameters, or acoustic identification of  layers), and the 
physically-oriented approach based on the Resonance Scattering Theory o r  R S T  37-40 

(Derem's "acoustic resonance spectroscopy ''41, the Le Havre experiments 12 on 
multilayer characterization by a combined observation of  resonance spectra and pulse 
returns; and G6rard's 42 Generalized Debye Series approach allowing access to the 
resonances o f  individual layers 43, o f  obvious importance for the geophysical 

* Visiting Professor into 1 and 3 
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problem). Finally, the application of acoustic surface waves on the target, being 
intimately related to the resonances, is mentioned for a determination of material 
parameters via a measurement of their dispersion c u r v e s  44, 45, or via time-frequency 
analysis 46. 

2 Non-resonant  inversion techniques 

2.1 Acoustic Scattering 

The aim of the inverse scattering formalism is to reconstruct, from a measured set of 
scattering data, as much information on the scattering object as possible, given a 
limited amount of  data (which may cause problems). In addition, the ill-posed nature 
of  the inverse problem can lead to great sensitivity of  the solution to small changes of  
the parameters, or to fluctuations in the measured data. Fourier expansions employed 
will add to this sensitivity. We mention here two examples from acoustic scattering 
illustrating, or trying to remedy, these problems. 

Bonnet 47 has considered the problem of reconstructing the given surface velocity of  
a vibrating cylinder from theoretical scattering data obtained from (Green's) integral 
equation using the boundary element method. Methods to stabilize the solution of an 
ill-posed problem are, among others, the Tikhonov regularization 48, or stochastic 
inversion 49. Bonnet employs the latter, in particular Gaussian inversion, treating the 
data as random variables. Figure 1 shows the results of  his inversion for the normal 
surface velocity U vs. distance z in the axial direction: the inverted U, bracketed by 
standard deviations, as compared to the exact value (heavy solid curve). 

Tobocman 5° has considered the effect of  Fourier vs. wavelet expansion on the 
reconstruction of an experimental ultrasonic pulse reflected from human tissue, from 
its filtered Fourier transform or from a stripped wavelet analysis; the former 
reconstructed pulse (dotted) is compared with the actual pulse (solid line) in Fig. 2. 
For the case of wavelet analysis, however, the reconstruction is found to agree much 
more closely with the actual pulse than the Fourier one. In addition, the wavelet 
approach is shown to lead to great computational simplifications. 

2.2 Tomography 

Examples are presented here from the area of  electromagnetics 2J, 51-53, although 
similar techniques can also be employed in ultrasonics 21. The problem here is the 
reconstruction of e.g. the permittivity and conductivity profiles of  a dielectric slab 
from measured transmission and reflection data. He and Str6m sj consider a point 
source above an inhomogeneous dissipative slab, and reconstruct its one-dimensional 
permittivity (e) and conductivity (o) profiles mainly from two-sided reflection data. 
Fields are split into downgoing and upgoing waves represented by time integrals, and 
for each the incident are reflected fields are expressed in terms of reflection and 
transmission kernels, either for the entire slab or for subregions of  the same 
("invariant imbedding"). The imbedding equations can be solved for e and o in terms 
of the scattering data by iteration. Figure 3 shows the assumed e-profile of  the slab 
(solid), reconstructed from clean data (dotted), after smoothing noisy data (dashed), 
and after exempting peaks in the kernels from smoothing (circles). It is seen that 
tomography of dielectric objects is well under control, at least in one dimension. 
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2.3 The Inverse Problem of Layered Structures 

Layers have been analyzed acoustically both in the laboratory 54-56, and by using field 
data concerning layered ocean floor sediments 57. In the mentioned laboratory 
experiments, the acoustic parameters of  a polyvinylidene fluoride (PVF2) film, which 
is used in the assembly of surface acoustic wave transducers, are determined from 
transmission coefficient (T) measurements. The PVF2 film is pasted on a glass 
substrate, with all this being immersed in water. Seven film parameters must be 
determined: its thickness, density, compressional and shear speed, two components of  
the stiffness tensor, and the power of  the latters' frequency dependence. The 
calculated and measured values of  T can be brought into agreement by least-square 
minimization, which can be done in several steps: at normal incidence, the reflection 
coefficient R is independent of  absorption, which permits a termination of  three 
parameters (thickness, density, and compressional speed) only from measurements of  
T. Subsequently, a measurement at non-normal incidence is performed obtaining the 
remaining parameters, with an adjustment of  the three preceding ones. Figure 4 shows 
T as a function of frequency as calculated using the final values of  the parameters 
(solid curve), and as measured (points), with a precision of  a few percent of  
agreement. 

Layers on the seafloor can be identified by acoustic means 57, 58. Reference 57 has 
developed two approaches measuring wide-band reflected signals at normal incidence 
on a multilayered seabottom at various frequencies. Normal incidence causes the 
dependence on shear waves to cease, so that only (complex) compressional speeds in 
each layer, and the layer thicknesses can be determined. Multiply reflected pulses 
occur in addition to those corresponding to direct time-of-arrival. Their first approach, 
based on the Simplex scheme 59, compares in a least-square sense experimental data to 
a set of  numerical ones and modifies the parameters of  the theoretical model until a 
good fit between experiment and theory is obtained. No parameters need to be known 
a priori, but the time of flight obtained for an echo pulse is used as an input parameter 
for the iteration. Their second algorithm, termed "Bottom-3", requires eight measured 
(complex) reflection coefficients at eight different frequencies, with which the 
analytic expressions for the (normal incidence) reflection coefficients can be reduced 
to one nonlinear equation for one layer thickness divided by its complex sound speed. 
The many possible solutions (due to the ill-posedness of  the problem) must be 
reduced here by imposing bounds on the bottom parameter values dictated by 
physical reasonableness. Laboratory data were obtained for a bottom model with one 
sediment and one subbottom halfspace. Figure 5a shows the measured echo signal 
sequence indicating reflections from the water-sediment and sediment-subbottom 
interfaces, plus two multiple reflection echoes. The inverse algorithms led to the 
reflection coefficients vs. frequency in Fig. 5b: dotted: Bottom-3; dashed: Simplex 
results, as compared to the measured reflection coefficient (solid curve). 

3 Resonant  Inversion Techniques  

3.1 Acoustic Reflection from Layers 

While the preceding chapter has presented results of inverse methods not specifically 
based on any physical features expected in the results, such features - the resonances - 
will now be discussed as a means for facilitating solutions of the inverse scattering 
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problem. In radar scattering, the "Singularity Expansion Method" (SEM) 3° is based on 
the observation that the excitation o f  the normal modes o f  a scatterer generates 
sinusoidally decaying transient signals (i.e. complex exponentials); the general signal 
thus consists of  a series of  complex exponentials known as a Prony series 6°. The same 
is the case for acoustic scattering. Use o f  the eigenmode resonances for a solution o f  
the inverse problem was first proposed in radar scattering by Moffat and Mains 5. In 
acoustics, we have advocated such a use for various purposes 27, with results detailed 
in Reference 28. One relevant case is, as in the preceding example, the inverse 
solution for a (fluid) sediment layer on a subbottom which was solved analytically 
both for the steady-state 1° and the transient case 61, using both normal and oblique 
incidence. 

Short-pulse laboratory experiments solving the inverse scattering problem o f  a 
structure with several layers have been carried out at the University o f  Le Havre 12, 62, 
based in part on the layer resonances. The structure, all immersed in water, consisted 
of  a polystyrene plastic layer and an aluminum layer separated from each other by a 
thin water layer. Due to its strong impedance contrast, the latter only played the role 
o f  a connector, while the resonances in the two other layers' reflection coefficients 
(each apparently quite unaffected by the other layer, as were the resonances) were 
very prominent in the echoes. They were caused by the excitation o f  guided Lamb 
waves in the two layers. The inverse procedure consisted in several steps: First, the 
longitudinal phase velocities in the two solids were determined by a bistatic 
measurement o f  the individual plate reflection coefficients out to the critical angles. 
The thicknesses of  the plates were determined from the spectra o f  the pulse echoes 
reflected by the individual solid layers, which showed the resonances o f  various 
Lamb modes. Their frequencies led to the layer thicknesses via a standing wave 
argument. The shear wave phase speeds for the plates resulted from a similar 
standing-wave consideration after separating the two plate wave propagations by their 
different decay constants. Finally, the plate densities were obtained from the absolute 
values of  the two plate reflection coefficients at normal incidence. Figure 6 shows the 
guided-wave resonance spectrum at oblique incidence (5 ° ) in which Lamb wave 
resonances in plastic (Alp, Sip, i = 1,2,.) and in aluminum (AiA,SiA) are identified. 

3.2 Geophysical Layer Resonances 

Just as in the case of  acoustics of  the ocean floor where resonances are prominent in 
bottom reflection j°, 6l and even in the propagation loss (including shear wave 
resonances63), the same is the case in geophysical subsurface-structure propagation 14 
although the corresponding resonance phenomena there apparently have not yet 
received all the attention they deserve. Remote sensing of  underground layers is o f  
importance for prospecting purposes. The usual Thomson-Haskell approach 64 would 
in general not be very useful for solving the inverse problem (except in the special 
case o f  normal incidenceS7), since a multiplicity of  parameters would have to be 
adjusted to get a fit to measured reflection data. G6rard has developed a multilayer 
reflection/transmission approach 4z~ 6s, valid for any separable geometry, which via a 
study o f  layer resonances, furnishes access to the remote sensing problem 43, while 
simultaneously providing physical insight via the individual reflection/transmission 
coefficients at layer interfaces. Details of  this approach are described in Ref. 43; 
suffice it to say here that the individual resonances o f  the mth layer are obtained as 
the solutions o f  the equation 

det (1-Rm,m+lSm) = 0 
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where Sm is the (diagonal) matrix of outgoing P and SV wave amplitudes, and R the 
reflection matrix between the mth and the (m + 1) st layer. It is seen that this equation 
furnishes the resonances of  each individual layer (of course modified from those of a 
free layer by layer coupling) separately, and these can be separately identified in the 
overall backscattered signal amplitude (such as shown in the preceding discussion of 
the experiments of  Refs. 12 and 62) for purposes of  layer identification. I f  the 
multiply-reflected amplitudes are desired, one may expand using the Cayley- 
Hamilton theorem, 

d - c ~  

( l -Rm,  m+lSm)'l = if '  (Rm, rn+lSm)P -1 . 
p = l  

This is the generalized Debye series 6s, which leads to a representation of  the solution 
in the half-space overlying the layered structure, in terms of the various reflection and 
transmission coefficients at the interfaces of  the multilayer system. While the 
preceding discussion concerns resonances in layers only, the resonances in the 
scattering from other geophysical inhomogeneities have been discussed by 
Dubrobskii and Morochnik 14. 

3.3 Surface-Wave and Time-Frequency Analysis 

It is well known that families of  resonances (such as shown e.g. in Fig. 6) are caused 
by the resonant reinforcement of multiply self-overlapping, phase-matching internal 
waves. In the case of  plates (Fig. 6), these are waves that repeatedly bounce between 
the plate faces, thereby generating the Lamb waves and (at the resonant frequencies), 
their resonances 61. In the case of finite-size scattering objects, they are (dispersive) 
surface waves that peripherally encircle the object over its surface, mainly in its 
interior. Phase matching of surface waves was first shown in Ref. 66 to generate the 
resonances, at resonance frequencies identical with the "natural frequencies" of  its 
normal vibrations. 

Ultrasonic waves encircling cylinders ("surface acoustic", or SAW waves) have 
been employed for the characterization and nondestructive testing of cylindrical 
objects67, 68. In a recent experimental study 4s, the wear on the cladding of a nuclear 
fuel rod has been tested using circumferentially propagating ultrasonic pulses and 
their echo returns, as well as their resonance spectra. The latter are shown in Fig. 7, 
(a) near the end of the rod, and (b) towards the middle, indicating larger wear there. 
The larger attenuation of higher-order return pulses also indicated the amount of  
wear. 

A series of  studies were carried out measuring the dispersion curves of  Rayleigh 
wave phase speeds in a chromium-plated steel layer 69, and of Scholte-Stoneley wave 
speeds in a polyvinyl chloride (PVC) layer glued to an aluminum plate 7°, 71, all 
immersed in water. The experimental model, in the latter case, consisted of a 10mm 
thick PVC layer which had been prepared in such a way that the velocity profiles of 
its compressional and its shear bulk waves varied linearly from one face to the other, 
thereby simulating a consolidated ocean-floor sediment layer which had these 
properties. A numerical inverse-scattering model was developed, based on the 
conjugate-gradient formalism, in order to recover these velocity profiles (the other 
properties of  PVC being assumed known) from measurements of  the Scholte-Stoneley 
wave dispersion curve on the structure. Scholte-Stoneley waves on plates are 
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described in detail in Ref. 43; a calculated dispersion curve of their phase speed Cs 
for the present experimental model is shown in Fig. 8. A least-square adjustment 
criterion between experimental values of Cs and those calculated assuming linear 
bulk speeds in PVC served to determine the bulk speeds to 4% or better. 

It is interesting to note that a model similar to the one just described has also been 
studied experimentally by Ref. 72 using short pulses, and employing for its analysis 
and inversion the Wigner-Vflle distribution. For a time signal x(t), its Wigner-Ville 
distribution is given by 

+ ~  

Wx(t,O) = f.= x(t  + "c/2) x*( t  - z /2)exp(-  2 i ~ t )  d t ,  

having the property that the frequency content of an echo pulse can be obtained, and 
hence the dispersion relations of its different components can be found, from a single 
measurement using one echo pulse. This leads, e.g., to the dispersive time-frequency 
curve for Wx, for the sediment model mentioned above, shown in Fig. 9. With the 
group delay time 

f ,fl "~g(O) = t Wx(t ,O) dt Wx(t ,O)  dt , 

a (group) dispersion curve for the Scholte-Stoneley wave may then be obtained from 
Fig. 9, and used for the inversion (determination of  the linearly increasing velocity 
profiles in PVC) of the model. 

The Wigner-Ville distribution was earlier used for analyzing acoustic scattering, 
e.g. from a thin spherical elastic (10% thick brass) shell 46,73. Figure 10 shows a 
corresponding time-frequency plot for the Scholte-Stoneley wave echo; the ridges in 
Wx are clearly frequency dependent and their spacing, at a given frequency, 
immediate leads via Xg to the peripheral-wave dispersion curves. In the study of  
Ref.73, the Wigner-Ville plots for scattering by the swim bladder of isolated fish have 
also been obtained, and may be used for species classification. 

3.4 Uncertainties in Inversion Procedures 

The above-mentioned radar scattering response, consisting of a series of decaying 
sinusoids, naturally represents a Prony-series expansion. The identification of a radar 
target by the location pattern of its complex-frequency SEM poles is then attempted 
by expanding the measured time response of  a target into a Prony series whose 
complex exponents represent this pole pattern. This approach is described by 
Dudley 35, who cautions, however, against the numerical uncertainties involved in the 
Prony inversion, especially when the data are noisy. Figure 1 la shows, here for the 
example of acoustic scattering from a rigid sphere 74, the pole pattern in the Laplace-s 
plane (s = its), calculated exactly (A), and recovered from Prony analysis of synthetic 
data of calculated echo pulses (other symbols, keeping different number of terms N in 
the series). The mere fact of time limitations imposed on the synthetic time series 
(since all real data are time limited) leads to a deteriorated pole identification (Fig. 



197 

v (kHz) 

80 160 

L___ 

i 

t (Os) 

Fig. 9. Time-frequency distribution of  return signal from a layered seafloor model. From R.ef. 
72. 

~";,; , :  - : , ~ " . ~  : 
~ ' /  i ~ b ~ ,  .~ r ~ .... ' ~ . . . . .  T '  

- - ~ D . # . ~ ,  ~ R  ~ ~ ' ,  i:.i~o: !~", ' ,:~' ' 

. |  ",,,, " . , , 

[~J, at.a..., . , .  . . . . . . . . . . .  

horizontal: 0-0.8 ms; vertical: 0-750 kHz; grey level: 4 dB/level 

Fig. 10. Time-frequency plot of  the scattering echo from a nickel-molybdenum spherical shell 
(4% thickness). From Ref. 73. 



198 

2000 

1800 

1600 

1400 

O 
,~ 1200 

e , L  

lOOO 

800 

600 

400 

200 - 

0 
-800 

' o * I  I 

. . . . . . . . .  I . . . . . . . . . .  

I 

_ _ _ ~ _ * _  . . . . . . .  
I 

I 

. . . . . . . .  t . . . . . . . . .  

. . . . .  L . . . .  L . . . . . . . . .  

I I 

. . . . .  L _ _ _CI 2_ . . . .  ~ . . . . .  

i I~ I 

I i i 

. . . .  L . . . .  I . . . . .  I . . . . .  

I I i 

. . . .  L . . . .  ~ - ~  - - -,- - - -o- 
I I I 

I I I 

. . . .  L . . . .  L . . . .  I . . . . .  

L~ I I 

. . . .  L_ . . . .  L . . . .  I . . . .  

I I I 

I I I 

-600 -400 -200 
Real part of s 

Fig. I la. Pole pattern in Laplace plane for acoustically rigid sphere (A), and recovered by 20 
Prony terms (~3) or more. From Ref. 74. 

.=. 

E 

2000 

1800 

1600 

1400 

1200 

1000 

800 

600 

400 

200 

0 
-800 

0 1 
I M 

L . . . .  I . . . . . . . . . .  

I 

I o 

° " -~  ~ 0 
I 

. . . . . . . .  I . . . . .  

tO  

. . . . . . . .  I _  .D_  _ _ 

I 
I 

. . . .  L . . . .  0 . . . .  I . . . .  

I llJ 

I I ° I 

. . . .  L . . . .  I . . . . .  I . . . . .  

. . . .  L . . . .  L _ ~ _  _ _I . . . . .  

I I ~ I 

. . . . .  L- _ -- - -~)L- . . . .  I . . . . .  

I I CIr. I 

. . . .  L . . . .  L . . . .  I . . . . .  

I I I ~  I 

I I I 

-600 -400 -200 
Real  p a r t  e f  s 

Fig. 1 lb, Pole pattern in Laplace plane for acoustical ly rigid sphere (A), and recovered by 20 
Prony terms (~1) or more,  signal terminated early. From Ref. 74. 



199 

1 l b). I f  even a small amount of Gaussian noise is added to the data, the deterioration 
becomes much worse 35. In view of this, Goodman and Dudley have embarked on 
constructing better inversion algorithms75: the Prony series, although mathematically 
correct, is inefficient and requires an inordinate number of  terms for convergence. 
Another alternative for improving identification beyond the Prony series is due to 
Sabio 76, in which a "synthetic echo response" is compiled from the data, and Fourier 
(or wavelet) analyzed to create a set of  spectral coefficients ("spectral template"). The 
spectral coefficients from other data are correlated with the template, and a "target- 
declaration threshold" is chosen for the correlation coefficient. This method was 
successfully applied to the target recognition of a set of  dipoles, and of a utility truck. 

4 Conclusions 

Inverse scattering methods, and inverse methods in general, have for their purpose the 
recognition of targets, and more so, their identification and characterization by remote 
means. We have reviewed here the applications of this approach in a variety of  fields: 
acoustics and etastodynamics, electromagnetic scattering and tomography, 
geophysics, and oceanography, in a series of  examples chosen from recent research 
which show that the field of inverse scattering has progressed well into applications 
of more and more practical nature. Inverse scattering approaches that make use of  the 
target resonances have been specially stressed here, since they were introduced into 
the field of acoustics by some of the present authors; but more of the related work of 
ours, not specially discussed here, can be found described in Ref. 28. 
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Abs t r ac t .  The inverse three-dimensional time-harmonic scattering problem of recon- 
structing the starlike and smooth boundary A of an impenetrable obstacle from its far 
field scattering data, for both, the acoustic and electromagnetic case, is considered. An 
approach, based on a method proposed by Kitsch and Kress [2], that employs weak a 
priori knowledge by choosing an auxiliary curve F inside the searched boundary A is 
used. Initial reconstructions are improved using an iteration scheme to adapt the inter- 
nal surface F by exploiting information on the reconstruction A of the previous step. 
The adaptation algorithm yields significant improvements on A, provided a reasonable 
first reconstruction may be obtained. 

1 I n t r o d u c t i o n  

In mathemat ica l  physics, scattering of a t ime-harmonic incident wave from an 
impenetrable  obstacle constitutes an exterior boundary  value problem for the 
Helmholtz equation. Let D_ denote the interior of a simply connected obsta-  
cle, A = OD_ its smooth boundary, and D+ -- ]Ra //7)_ the region outside the 
obstacle. All t ime dependencies are given by the factor exp(-icot)  with angular  
frequency co, which, for simplicity, is omit ted in the sequel. We assume tha t  the 
origin of the coordinate system is contained in D_ and tha t  there is a homoge- 
neous, isotropic and non-absorbing medium in D+. Throughout  the paper,  the 
unit normal vector n to any closed surface is always directed outward into the 
exterior domain of the surface. 

In the acoustic case, we may choose a scalar velocity potential  u to fully 
describe all scattering quantities. Let k denote the wave number  and A the 
scalar Laplace operator.  Then, under suitable assumptions [2], the (linearized) 
acoustic scattering problem is defined by 

( n  + k  2 ) u ( r ) - - 0 ,  r • D +  , (1) 

where the total  field u is given by superposit ion of the known incident field and 
the scattered field, 

u(r)  = uinC(r) + u S ( r ) ,  r e D+ . (2) 

The scattered field u s has to comply with the Sommer#ld radiation condition 
for all directions ~ = r / I r  I • /2, ~ denoting the unit sphere, 

lira r ik&(r = O, r = [r I (3) 
r--+oo O r  ' 
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in order to represent a radiating solution. The interaction between wave and 
surface of the obstacle is modeled by a boundary condition. A perfectly soft 
surface leads to a Dirichlet problem with homogeneous boundary  condition 

u(r)=0,  r c A ,  (4) 

whereas a perfectly hard surface leads to a Neumann problem with homoge- 
neous boundary condition since the obstacle's rigidity implies a vanishing normal 
derivative of the total field, 

au(r) 
- 0 ,  r c A .  (5) 

On 

In the electromagnetic case, we choose the electric field E as the quanti ty 
of special interest. Since in D+ we have neither currents nor charges, from the 
time-harmonic Maxwell equations 

cu r lH( r )  = - iweE( r )  / 
cur lE( r )  + iw#H(r )  ' r e D+ (6) 

with electric permitt ivi ty e and magnetic permeability /a [6], we arrive at the 
homogeneous vector Helmholtz equation for divergence free solutions E, 

( a  + k 2 ) E ( r ) = 0 ,  d i v E ( r ) = 0 ,  r c D +  . (7) 

Again, the total field may be seen to be a superposition of the incident and the 
scattered field, 

E(r )  = EinC(r) + ES(r) ,  r e D+ . (8) 

Let ~ = V/p-/c denote the wave impedance, and ~ = r / J r  I. Then, similar as in 
the acoustic case, the Silvcr-Miiller radiation condition, 

lim r (HS(r )  × ~ - E S ( r ) / u )  = 0  V ~ E  ~2, r = [ r  I , (9) 

ensures the solution to be a radiating one. Since the obstacle is assumed to be 
infinitely conductive the tangential component n × E of the total  electric field 
needs to vanish on the surface A, 

n x E = O  o n A  . (10) 

Our scattering data  for inversion were simulated by numerically solving the 
respective forward problems. All boundary integral equations were evaluated by 
using the boundary element method (BEM). We did not take any special measure 
to handle the case of internal resonances, but in practice we never encountered 
any problems referring thereto. 

In order to rule out so called "inverse crimes" [2], we used different basic 
equations and /or  numerical procedures for direct and inverse problems. 

The direct electromagnetic problems were solved using so called vectorial cur- 
rent basis functions (CBFs) [8] for linear triangular elements to model the surface 
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current density and by applying the Galerkin method to equation (18), s. sec- 
tion 3, whereas for the inverse electromagnetic problem we used nodal quadratic 
elements and the collocation method. 

In the acoustic case we used the double-layer equation (12) for the direct 
sound-soft problem and the single-layer equation (15) for the direct sound-hard 
problem. Both types of acoustic inverse problems were solved using the single- 
layer approach, i.e. only for the sound-hard problems we used the same basic 
equation and numerical procedure for the forward and inverse problem, however, 
and this is true for all of our examples, we used much finer meshes for the direct 
calculations than for the inverse ones. 

The relative error in percent, used to specify the deviation of a disturbed 
function ] from its original f ,  is defined by e :=  ]1] - f i l L  ~ / I l f l lL  2 * 100. 

To solve the inverse problem of finding the obstacle's boundary  from its 
known boundary condition type and its far field scattering data, we used an 
iterative reconstruction technique that  is based on a method proposed by Kirsch 
and Kress [2]. In an earlier paper [3], we worked out the details and demon- 
strated the applicability of the method for two-dimensional problems, where no 
distinction between acoustic and electromagnetic case is necessary. The present 
paper deals with the extension to three dimensions. 

In the following two sections we briefly describe the approaches to solve the 
direct obstacle scattering problems for both the acoustic and electromagnetic 
case. Since the problems under consideration are defined in the outer region D+, 
which is infinitely extended, integral equation formulations are most suitable 
since they allow not only theoretical considerations but  also serve as a base for 
numerical solution schemes. Section 4 gives some aspects of the reconstruction 
method and in section 5 we comment on the regularization technique used and 
the problem of finding reasonable regularization parameters.  Section 6 follows 
with details to the adaptation technique. Finally, section 7 closes with numerical 
examples. 

2 A c o u s t i c  S c a t t e r i n g  f r o m  I m p e n e t r a b l e  O b s t a c l e s  

Mathematically, the solution to both, the Dirichlet- and the Neumann problem 
could be given either as the field of a single-layer on A, or, alternatively, as 
the field of a double-layer on A [1]. Since, for numerical reasons, we preferred 
to have integral equations of the second kind rather  than equations of the first 
kind, we chose to use a double-layer representation for the Dirichlet problem and 
a single-layer representation for the Neumann problem. 

The/ar field pattern u s we used for inversion is defined on the unit sphere 
/2 as in [2] by the asymptotic behavior of the scattering solution, 

u S ( r ) _  e x p ( i k r ) ~ u S ( ~ ) + O  ( 1 ~ ,  r - -+o c  . (ii) 
r L \ r / )  

This means that  far from the scatterer, locally, the scattered wave behaves like 
a plane wave with decay 1 / r ,  propagating in direction ~. 
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Due to the jump relation of the double-layer potential the second kind integral 
equation 

fA T r' 0~(r , r ' )  ( Z + E ) z : = ~ ( r ) + 2  ( ) Onn' d s '=2u~_( r ) ,  t e A  (12) 

holds for the double-layer density T, where the fundamental solution • of the 
scalar Helmholtz equation is given by • = 1/(47r)exp(ik[r - r '[)/Ir - r' I and 
where u~ denotes the outer limit of the scattered field u s towards the surface A. 
According to (2) and (4), u~_ = -uin¢(r) for r E A has to be chosen. After having 
solved (12) the scattered field at any point in D+ for a sound-soft obstacle is 
given by 

~A , , , 0~( r , r ' )  ds', r e D + ,  (13) 

and the corresponding far field pattern with 4 ~  = 1/(47r) exp(-ik~r')  by 

uL(~ ) = 9~T := ~ r(r')0~(~'r')0n' ds ' ,  ~ e f2 (14) 

Due to the jump relation for the normal derivative of the single-layer poten- 
tial, the Neumann problem leads to the second kind integral equation 

( Z - K : ' ) a  := a ( r ) -  2 fA a(r ')  0~( r ' r ' )  ~n On ds' = - 2  u~(r) ,  r e A (15) 

for the single-layer density a where according to (2) and (5) again u~_ = - u i n c ( r )  
for r E A has to be chosen. After having solved (15) the scattered field at any 
point in D+ for a sound-hard obstacle is given by 

/Aa ( r ' )~ ( r , r ' ) d s  ' ,  r G D +  , (16) uS(r) Va 

and the corresponding far field pattern by 

uS( j )  = . 9 ~ a : - - f a ( r ' ) ~ ( ~ , r ' ) d s ' ,  ~C f2 (17) 
JA 

3 E l e c t r o m a g n e t i c  S c a t t e r i n g  f r o m  P e r f e c t l y  C o n d u c t i v e  
O b s t a c l e s  

The electromagnetic scattered field can be given either in terms of electric sur- 
face currents, or in terms of magnetic surface currents, which are equivalent to 
a double-layer of electric currents, on A. Since the obstacle is thought to be 
electrically infinitely conductive, electric surface currents represent the physical 
sources of the field, while the alternative of assuming magnetic surface currents 
is of a purely formal nature. Determining the electric surface currents from the 
tangential component of the electric field E s(r) on A leads to a boundary inte- 
gral equation of the first kind [1], whereas the latter variant leads to an integral 
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equation of the second kind due to the jump relation for the electric field E s(r) 
at a magnetic surface current. Again, for numerical reasons, we preferred the 
second kind integral equation. Thus, for the magnetic surface current density 
m,  there holds 

m ( r ) + 2 ~ A n r  x c u r l r { q S ( r , r ' ) m ( r ' ) } d s ' = - 2 n r  xE~_( r ) ,  r E  A , (18) 

where E~_ denotes the outer limit of the scattered electric field E S towards the 
surface A. Knowing the layer m,  the scattered field is given by 

ES(r) = g m  := - c u r l  J/A ~(r ,  r ' )  m( r ' )  ds ' ,  r E D+ , (19) 

and the corresponding far field E ~ ,  defined in complete analogy to (11), reads 

E S ( f )  = . 9 ~ m m : = - f x i k f q S ~ ( f , r ' ) m ( r ' ) d s  ' ,  f E  ~? . (20) 
3~ 

4 T h e  R e c o n s t r u c t i o n  M e t h o d  

According to a method described in [2], an auxiliary closed surface F inside A 
is chosen, s. Fig. 1. This initial choice of F requires some a priori information 
about the size and the location of the obstacle. 

In the acoustic case, given the far field u~(~) ,  we seek to represent the 
scattered field by a single-layer on the interior curve F by taking (17) as integral 
equation for the single-layer density a on F,  

5 ~ ( ~ , r ' ) a ( r ' ) d s ' = u s ( f ) ,  ~E  ~? (21) g 

Having computed a, the near field uS(r) is given by (16), A being replaced by F,  
and the total field by superposing incident and scattered field. The boundary  A 
is now found by searching a closed curve A along which the boundary condition 
is matched in a minimal residual norm sense, i.e. for the sound-soft obstacle A 
outside F is searched such that  

2 i 
El = IIBIlIL~(A) - min, Bl ( r )  = (Va + u inc) ( r ) ,  r E A , (22) 

whereas the sound-hard obstacle requires the normal derivative of the total  field 
to vanish, i.e. for A outside F 

F2 = II 2IIL2(A) ~- min,  B2(r) = Onn (r) ,  r E A . (23) 

Given the electromagnetic far field E~(~) ,  in analogy to the acoustic case, 
a far field to near field transformation is performed by taking (20) as integral 
equation for m on F,  

- f x i k f ~ c ~ ( r , r ' ) m ( r ' ) d s ' = E S ( ~ ) ,  f E  /2 , (24) 
J r  
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to represent the reconstructed field by magnetic surface currents on F.  The 
obstacle's boundary is now found by requiring that ,  for A outside F ,  

/~ 2 F 3 = I I  31]L2(A) =-min,  B 3 ( r ) = l n x ( g m + E i n c ) l ( r ) ,  r C A  . (25) 

Since only starlike boundaries are considered, A may be represented by a 
radial function of the usual polar coordinates 0 and y) in the form 

A : r ( 0 ,  y)) : f ' ( 0 ,  y ) ) rA(O,  y)) = r r A ( r )  o (26) 

As the authors in [2], we used a t runcated Fourier series of spherical harmonics 
for 0 < 0 < 7r and 0 _< qo < 27r, 

rA (0, y)) = ~ Pn m (cos 0) {anm cos(my)) + bnm sin(my))} , (27) 
n = 0  m = 0  

to represent a finite dimensional set of starlike surfaces. To numerically minimize 
the functionals in (22), (23) and (25), a discrete set of collocation points on A 
is necessary. We used points on A in predefined directions ~t, l = 1 , . . . ,  M such 
that  they were about equally distributed on the unit sphere. After discretization, 
for j = 1, 2, 3, the functionals (22), (23) and (25) read 

M 

Fj(aoo,.. . ,  aNN, boo,. . . ,  bNN) = Z IBJ (~trA(Ot, y)t))l ~ : min (28) 
I = l  

The Fj are nonlinear functionals of (N + 1) 2 unknown coefficients (b,~0 = 0). 
We used a modified Levenberg-Marquardt algorithm (routine LMDIF1 from 
MINPACK, jacobian approximated by finite differences) for the numerical min- 
imization of the Fj. 

5 R e g u l a r i z a t i o n  a n d  P a r a m e t e r  C h o i c e  

The discretization of the ill-posed integral equations (21) and (24) leads to ill- 
conditioned linear systems. We compared conjugate gradients stopped after a 
suitable number of iterations [4], t runcated SVD (singular value decomposition), 
and Tikhonov regularization to obtain regularized solutions. The results did not 
depend very much on the method used. 

In contrast, it is crucial to find reasonable regularization parameters.  For all 
of our examples presented in section 7, we used the CGLS-algorithm (conjugate 
gradients least squares) from [9] to solve the overdetermined linear systems. Our 
parameter  choice strategy was twofold, depending on whether we had "ra ther  
exact" far field data  (as good as our forward solvers could simulate them) or 
whether they were contaminated by some (artificial) noise. We were led to do so 
by L-curve plots [5] for various examples and adaptat ion steps, showing logarith- 
mically the relation between the norms of the layer densities II~PI and Ilmll versus 
the norms of the corresponding discrepancies I1 -~  - u s l l  and []~'mm - E s l l ,  
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Fig. 1. unit circle ~, inner auxiliary 
surface F, and reconstruction A 

Y 

ri+ l F i +  l ~ i + 1  
F,max / 

z T 
Fig. 2. Modification process to get a 
new auxiliary curve F i+1 from /~i+1 

respectively, as a function of the regularization parameter, i.e. in our case for 
different CG-iteration steps. 

With "exact" far field data, we never reached the "corner" of the L-curve with 
a reasonable number (< 8000) of CG-iteration steps. Since we got stable solutions 
for any feasible number of iterations, we used a simple predefined sequence j(i) 
of CG-iteration steps ((i) denoting the adaptat ion index), depending on the 
adaptation step i of the auxiliary curve F i by 

j(i) _- j(0).  2 i ' i = 0, 1, 2 . . . .  , I - 1 and j ( I )  _- j(x-1) , (29) 

that  means, we doubled the number of CG iterations with every adaptat ion 
step, except for the final one. It seems reasonable to allow larger residual norms 
I I ~ a  - uSll and I I~nm - ESll ,  i.e. to heavier regularize the solutions, during 
initial adaptation steps and to decrease it with increasing adaptat ion steps, since 
for the initial internal curves a good reconstruction of A cannot be obtained 
anyhow. Of course, the arbitrarily chosen exponential increase of iteration steps 
according to (29) is just one of many possibilities and by no means crucial for 
the final result. First of all, it saves computat ion time, compared with the case 
of a constant number of CG-iterations, since our CGLS-procedure accounts for 
most of the CPU-time of the total reconstruction. 

In the case of erroneous far field data, we used the L-curve criterion [5]. For 
every adaptation step, we performed 800 CG-iterations to have enough points 
representing the L-curve. Then we chose the CG-iteration number belonging to 
the "corner" of the L-curve. 

6 T h e  A d a p t a t i o n  A l g o r i t h m  

After having computed a reconstruction A i with interior curve F i, an improved 
reconstruction A i+1 may be obtained with a more suitable interior curve F i+1. 
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To obtain F i+1 , we first define 

4 ?  l = r ~ 4 - f l ( r ~ l - r ~ )  , 0 < • < 1  (30) 

with adaptation factor/~. Of course, to leave open the possibility for r~ +1 (~t) to 
decrease in the following step i + 1, a distance d between F i+1 and A i must be 
kept. Therefore, after having evaluated (30), we take 

( - i+1^  i+1 - ) ~ + l ( ~ z ) = m i n  r r (r t) ,rv,  ma~(rt ) f o r a l l f t ,  l =  1 , . . . , M  (31) 

i+1 is determined in direction ~t such that  according as new auxiliary c u r v e ,  rF, max 
to Fig. 2 a distance d normal to A i remains between F i+1 and A i. Since the 
set {~+l(~t)} obtained from (31), in general, does not belong to the surface 
space defined in (27), it is subsequently smoothed out by interpolation using 
representation (27) for F.  To this end, coefficients a n m ,  bum are determined by 
overdetermined collocation such that  with rv(~t) according to (27) and r r (~t )  
from (31) 

M 

E ( r v ( f , )  - ~v(f ,))  2 =! min . (32) 
4=1 

The final set {r/v+l(ft)} is computed with coefficients from (32). Of course, this 
interpolation procedure may slightly vary the adjusted minimal distance d be- 
tween A i and F i+1 again. 

Prom a theoretical point of view, there might be an objection against this 
adaptation technique. Indeed, it cannot be guaranteed that  our basic assump- 
tion, namely F i being inside the original obstacle, is valid throughout  all adapta-  
tion steps. But we found in practice that  this lack does not affect reconstructions 
negatively. 

7 E x a m p l e s  

In order to simplify comparisons between different methods from different au- 
thors, we used examples from [2], tha t  were used by other authors as well, e.g. 
[7]. Our goal was first to compare electromagnetic and acoustic reconstructions, 
and second to achieve best possible results from "exact" far field data  with a 
minimum of probing cost, i.e. with one incident wave only. Of course it's unre- 
alistic to use exact data  in view of practical applications, but  nevertheless one 
has to know what can be achieved with highly accurate data. 

All of our reconstructions were performed using one incident plane wave of 
the form 

uinC(r) = u0 exp(ikr) or Einc(r) = E0 exp( ikr ) ,  r C ]R 3 (33) 

for the acoustic and electromagnetic case, respectively, with k = Ikl = 2. All far 
field data  were given at 1148 different directions, about  equally spaced on J2, and 
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M = 128 co l loca t ion  po in t s  on A were used  to  min imize  the  func t iona l s  (22), (23) 
and  (25). T h e  degree  of the  series (27) was a lways  N = 6, the  m i n i m a l  d i s t a n c e  
d was d -- 0.25, the  in i t ia l  guess for F ° was a sphere  wi th  r a d i u s  R = 0.4 a n d  the  
a d a p t a t i o n  fac tor  fl was chosen to  be fl = 0.6. T h e  n u m b e r  of a d a p t a t i o n  s teps  
was 6 in the  case of "exac t "  d a t a  a n d  10 for c o n t a m i n a t e d  d a t a  to  see w h e t h e r  
a s t ab le  r econs t ruc t i on  was ob ta ined .  T h e  r e c o n s t r u c t i o n  e r ror  is d e n o t e d  wi th  
erec in the  figures. 

A l t h o u g h  all of our  examples  were r o t a t i o n a l l y  s y m m e t r i c ,  we d id  no t  exp lo i t  
th is  p r o p e r t y  to  s impl i fy  and  improve  r econs t ruc t ions .  
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Fig .  3. Initial reconstruction compared 
to the original and auxiliary curve, 
erec ---- 20.2%. 
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Fig .  4. Reconstruction compared to 
the original after 1 adapta t ion  step, 
erec ---- 16.0%. 
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Fig .  5. Reconstruction compared to 
the original after 2 adapta t ion  steps, 
e,.e~ = 7 . 6 % .  
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Fig .  6. Final  Reconstruction, original 
and auxiliary curve after 6 adapta t ion  
steps, erec = 1.4%. 
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Fig. 7. Acoustic sound-soft and elec- 
tromagnetic reconstruction error in % 
versus the adaptation step. 

Fig. 8. Ilm[I and I[al[ (ordinate) ver- 
sus the residual norms II.~'mm - E~I  I 
and I 1 ~ -  ~ l l  (abscissa) for all 
CG-iteration steps. 

7.1 R e c o n s t r u c t i o n  o f  a n  " A c o r n "  f r o m  E x a c t  F a r  F i e l d  D a t a  

In our first example we reconstruct an acorn as it is mentioned in [2], given by 

! 3(17 
r =  ~ - - + 2 c o s ( 3 a  , 0 < a < T r  , (34) 

(a  denoting the angle between r and the x-axis) from both  acoustic sound-soft, 
acoustic sound-hard and electromagnetic scat tering da ta  with k = {0, 0, 2} T and 
E0 = {1,0,0} T. 

Fig. 3 to 6 show the same sectional view (xy-plane) of the reconstruction from 
electromagnetic da ta  for different adapta t ion  steps. The results from acoustic 
data,  which are not shown, were bet ter  throughout  all adapta t ion  steps, s. Fig. 7. 
Fig. 8 shows parts  of the L-curves, which did not yet reach their "corners" for 
j(6) = 3200 and j~6) = 6400 CG-steps (J~, J~: number  of CG-i terat ion steps for 
acoustic and electromagnetic reconstructions, respectively). 

For acoustic sound-soft da ta  we got a final error of erec ---- 0.24%, for sound- 
hard da ta  of erec = 1.1%, and for the electromagnetic reconstruction we had 
e r e c  = 1.4%. 

7.2 R e c o n s t r u c t i o n  o f  t h e  " A c o r n "  f r o m  E r r o n e o u s  F a r  F i e l d  D a t a  

Fig. 9 and 10 show the initial and final reconstruction from electromagnetic 
da ta  with 1% noise added. Especially concave par ts  of the obstacle suffer from 
less accurate data,  as can be seen by a comparison of Fig. 6 with Fig. 10. For 
acoustic sound-soft da ta  we got a final error of ere~ = 6.0%, for sound-hard da t a  
of erec = 3.2%, and for the electromagnetic reconstruction we had erec = 3.9%. 
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Fig. 9. Initial reconstruction, error of 
r e c o n s t r u c t i o n  is e ~ c  = 2 0 . 4 % .  
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a d a p t a t i o n  s t e p s ,  e r r o r  d i m i n i s h e d  t o  

erec --  3 . 9 % .  

7.3 R e c o n s t r u c t i o n  o f  a " P e a n u t "  f r o m  E x a c t  F a r  F i e l d  D a t a  

Fig. 11 and 12 show the initial and final reconstruction of a peanut  from elec- 
t romagnet ic  data,  as it is used in [2] and [7], given by 

3 ( 1 - 3 s i n 2 c ~ )  ½ r = ~  , 0 < a < ? r  . ( 3 5 )  

Again, we used k = {0, 0, 2} T and E0 = {1, 0, 0} T. The result is even be t te r  as 
for the acorn in section 7.1 what is probably due to a higher symmet ry  of the 
peanut  and less concave parts.  For acoustic sound-soft da ta  we got a final error of 
erec = 0.37%, for sound-hard da ta  of erec = 0.27%, and for the electromagnetic 
reconstruction we had eric = 0.62%. 
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8 C o n c l u s i o n s  

An iteration scheme has been presented to reconstruct impenetrable 3D scatter- 
ers with smooth and starlike boundaries from their far field scattering data. 

The examples show that  in both the acoustic and electromagnetic case the 
adaptation technique does much improve reconstructions, compared to the case 
of not adapting the internal surface, even when reconstructions from erroneous 
data  are performed. 

The fact that,  for data  "free" of errors, the acoustic reconstructions consis- 
tently turn out somewhat better than the electromagnetic ones is probably, at 
least partly, due to the fact that  the acoustic far field data are more precise than 
the electromagnetic data. 

The adaptation algorithm allows to start the reconstruction process with a 
rather poor initial guess of the obstacle's shape, fie. a small sphere, in general, 
will be sufficient. 
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A b s t r a c t :  Ultrasound tomography is modeled by the inverse problem of a 
3D Helmholtz equation at fixed frequency with plane wave irradiation. It is 
assumed that the field is measured outside the support o] the unknown po- 
tential f for finitely many incident waves. Starting out from an initial guess 
fo ]or f we propagate the measured field through the object fo to yield a 
computed field whose difference to the measurements is in turn backprop- 
agated. The backpropagated field is used to update fo. The propagation as 
well as the backpropagation are done by a finite difference marching scheme. 
The whole process is carried out in a single step fashion, i.e. the updating is 
done immediately after backpropagating a single wave. It is very similar to 
the well known A R T  method in X-ray tomography, with the projection and 
backprojection step replaced by propagation and backpropagation. Numerical 
experiments with a 3D breast phantom on a 65x 65× 65 grid are presented. 

1 I n t r o d u c t i o n  

We consider the inverse problem for the 3D Helmholtz equation 

Au j + k 2 ( l + f ) u  j = 0  

(1.1) 
u j = u~ + v j , 

where ui,  j = 1 , . . .  ,p  are the incoming waves, vJ satisfies the Sommerfeld 
radiat ion condition and the function f vanishes outside the ball of radius p. 
We want to recover f numerically from knowing uJ = gJ on the sphere of 
radius p for j = 1 , . . .  ,p  and a fixed frequency k. 

This is a model for ultrasonic tomography  [6]. However we point out tha t  
in a real ultrasonic scanner the irradiating waves are no longer plane waves 
but  standing waves in a finite container. 

We s tar t  with a short survey on the extensive l i terature on numerical  
methods .  With  the exception of methods  which use the  Born or Rytov  ap- 
proximat ion [4], it seems tha t  the only me thod  which actually has been tes ted 
numerically in 3D is the Newton me thod  combined with a finite Fourier ex- 
pansion of f [5]. The  other methods  have been used in 2D only, even though 
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an extension to 3D is possible in principle. The dual space method  [2] reduces 
the problem from the whole space 1~ 3 with the far field (which we do not use) 
as da ta  to an overposed boundary value problem in a finite volume which in 
tu rn  is solved by optimization. 

Of course we can always t ry  to compute the Born series [3]. For this 
purpose we write (1.1) as an integral equation 

uJ(=) = ui(=) - k2 f c(x,~)f(y)~J(y)~y. (1.2) 

Here, G is the Green's function of A + k 2 with the radiation condition at c~. 
The  Born series (ft)  is now obtained by solving 

/ c(x,y)ft(y)ug(y)dy, Ixl = P ,  j - - -  1 , . . . , p  gJ (x )  U~ (X) k 2 

• J and  for f t ,  where u~ -- u i 

~ g + l  + k~( 1 + i t )~+l  = 0 
• j 

with u~ = ui + a function satisfying the radiation condition. 
The  generalized SOR-method of [7] also starts out from the integral equa- 

tion (1.2). Writing for the integral operator  in (1.2) simply G, this method  
minimizes the functional 

P 

J k'-a:.uJii~,.~(1~,<,,)!,._ j { l lg j + ,~, + k'CSuJ ' II~,(,,l=p) + ~lluJ - u~ + (1.3) 
j = l  

with some weight factor 7- The minimization is done by 

where r~, dt are update  directions and a t ,  fit are chosen so as to minimize 
(1.3). 

A non iterative method has been suggested in [15]. With G S the Green's 
function of A + k2(1 + f ) ,  we can rewrite (1.1) as 

,J(~) = - k  ~ f cs(~, y).~(=),~i(y)dy. (1.4) 

Now form a linear combination of the incoming waves such that  the resulting 
field peaks at z, i.e. 

P 

Z ~ j ( z ) ~ ( ~ )  ~ ~(~ - z ) .  
j = l  

Then,  from (1.4), 

P 
-k'cs(~,z)/(~),, ,~(z)~(~) (1.5) 

j=l 
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is approximately known on Ix[ = p. From the identity 

a (x,y) - a(x,y) = - k  2 f VA=,z)f(z)a(z,y)dy 
Izl<p 

we get an approximation to G l ( x , y  ) for Ix[ = p which together with (1.5) 
determines f .  The  method still has to be tested. 

A very efficient code has been given in [6]. It is very similar to ours 
in tha t  it uses initial value techniques and ignores in the Jacobian entries 
which correspond to different incoming waves. The initial value technique is 
based on factoring the Helmholtz equation into a product  of two first order 
differential operators. 

The purpose of this note is to extend the method of [14] to 3D and to 
conduct 3D numerical experiments. We illuminate the object by plane waves 

J -.~ e i k x ' O j  where the unit vectors Oj are lying in a plane. We use an initial u i 

value technique as in [6], but  we do not rely on parabolic approximations [8] 
of the Helmholtz equation. 

2 T h e  i n i t i a l  v a l u e  m e t h o d  

Let  ~2j be the cube circumscribed to the reconstruction region Ixl _< p with 
edges parallel to the coordinate axes and aligned with the direction 0j = 
(cos Tj, sin toj,0) of the j - th  incoming wave. L e t / ' ~  be the face lying in the 
plane x • Oj = +p,  and let l"j be the other faces of $2j. Rather  than working 
with the scattered fields vJ we use the scaled scattered fields wJ = e-~k='°Jv j 
which satisfy 

Zlw j + 2 i k O j . V w  j + k 2 ( l + w j ) f  =O in ~2j. (2.1) 

Note tha t  we do not make the parabolic approximation [8], i.e. we do not  
assume that  the second derivative of wJ in direction Oj is small compared to 
kOj • VwJ. 

In [11] we haved analysed the stability of the initial value problem 

OwJ 
= = h j on _Pj- (2.2) w j gJ on F j U F  7 ,  Ou 

for this elliptic differential equation. Let  

1 
[ e-iX'~wJ(x)dx , ~ J_ Oj 

~ . O j = s  

be the 2D Fourier t ransform of w in the plane x • Oj = s. We found that  
tbJ((, s) depends in a perfectly stable way on the initial values for wJ on Fj- 
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for all frequencies [~1 < ~ where t¢ is some number depending essentially on 
k and, to a minor extent, on f .  More precisely we have the following result 
[11]: 

i T h e o r e m  2.1 Let f E C I ( R  3) and f = f l  + -~f2 with f l ,  f2 real, and let 
m2, M2 be constants such that 

- l  < m l  <_fl < _ M 1 ,  IO-~z2I<MI, [f2[<M2, 
Let w be the solution of the initial value problem 

A w  + 2ikO. V w  + k2(1 + w ) f  = 0 

Ow 
= h  on x . O = O .  w = g  , Ou 

Then, for ~ < kv/1 -q- m l ,  we have on x • 0 = s 

Ilw~ll 2 < e~'(llhll 2 + k2(1 -t- M~)llgll 2 + 2k411f(w - w~)ll 2) 

with II" II the L2-norm in R ~, w~ the tow-pass filtered version OfT ,  i.e. 

and 

f ~(~),  I~1 < ~,  Wt¢(~) 
t 0 , I~1 ___ ~ ,  

Practical ly the theorem means tha t  we have stability for the initial value 
problem provided that  n is slightly smaller than k. In our examples we used 
values of e; between 0.90k and 0.99k. 

Thus we may define a nonlinear map Rj : L2([x[ < p) --+ L2(F  + )  by 
put t ing 

R j ( f )  = w~l~+  • (2.3) 

The inverse scattering problem now calls for the solution of the nonlinear 
system 

R j ( f )  = gj , gj = gi[5+, j = 1 , . . .  , p .  (2.4) 

As in [12] this is done by an ART-type procedure. Starting out from an initial 
approximation f0, we put  f0 = f0 and for j = 1 , . . .  ,p 

f j  f j -1  ' • -1 = -- w R j ( f j - 1 )  C} ( R j ( f j - 1 )  -- g j ) .  

The first approximation f l  is then defined to be fp. For Cj we simply take 
the operator  7 I  where 7 is chosen such that ,  in the limit k --4 c~, Cj 

o t = l q - - - - ~ - q -  02 , O =  1 + m 1 - ( k ) 2 .  
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R} (0)R~.(0)*, i.e. 

L2(F +) can be done as follows: Solve the initial value problem 

7 = k2/p [10]. The evaluation of R}(f)*g for some g e 

A z + 2 i k O j . V z - k 2 7 z = O  in ~2j 

(2.5) 
0Z 

z = O  on r j u r ? ,  --=g on F?. 
Ov 

Then, 
R;(f)g = k2(1 + ~ ) z  

where wJ is the solution of (2.1) - (2.2). Of course the stability properties of 
(2.5) are exactly as discussed above. 

3 T h e  f in i t e  d i f f e r e n c e  m e t h o d  

The  numerical solution of the initial value problems (2.1) - (2.2) and (2.5) 
can efficiently and conveniently be done by a finite difference method.  In view 
of our stability result (see previous section) this suggestions itsself, but  it has 
been used already in [9]. We simply use the usual five point discretization 
on the grid $2 h = {hg~j + hmO]- + hne3 : ~.,m,n = -q , . . .  ,q} where 0~ = 
( - s i n  ~oj, cos ~oj, 0) and e3 = (0, 0, 1) and h = p/q. Then, the finite difference 
approximation to (2 .1)-  (2.2) reads (the superscript j is omitted) 

We+l,m.n "~- Wt--l,rn,n + We,rnWl,n -~ Wg,rn--l,n -~- We,rn,n+l "~- Wg,m,n--I 

-6we,,~,,~ + ic(we+l,m,.  - we-l ,m,n)  + C2(1 + we,.~,,~)/e,,~,. = O, 

g , m , n  = --q + 1 , . . . , q - -  1 ,  (3.1) 

we,m,n:ge,m,,, for I m ] = q  or In I = q  and for t = - q , - q + l .  

The boundary  conditions in (3.1) assume that  the field can be measured 
everywhere on each of the faces of f2j. The  values of gt,m,n : fJ(htg} +hnO~) 
for ~ = q -- 1 have to be computed from the field in Ixl > p by numerical 
differentiation. (3.1) is solved in a recursive way, i.e. if w in known on the 
levels g, g -  1 we compute  it for g+ 1 by (3.1). In order to preserve stability we 
have to filter out the frequencies greater than  r~ at each stage of this process. 
This can be done by doing a 2D F F T  on each matr ix  (we m,,~)m,n=-q ..... q 
as soon as it is computed,  zeroing all the entries with ~ > 2pn/lr, 
followed by a 2D inverse FFT.  The total  operator  count for solving (2.1) - 
(2.2) once is O(q31ogq). For details see [16]. (2.5) is solved exactly in the 
same way. 
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4 N u m e r i c a l  e x p e r i m e n t s  

In a first test  we checked the initial value me thod  for accuracy. We solved 
the forward problem (1.1) for the function 

0.2 ,  Ixl < 0.5 
jr(x) = 0 , otherwise (4.1) 

and k = 50 analytically and compared  the exact solution with the approxi- 
m a t e  solution of the initial value me thod  for h = 32. We found sat isfactory 
agreement.  

In a second test  we used the exact da ta  for (4.1) and k = 50 as input 
to our reconstruction me thod  with p = 25, q = 32. As initial approximat ion  
we chose (4.1) with 0.2 replaced by 0.1. After 3 sweeps of our a lgori thm we 
obtained a reconstruct ion very similar to a low pass filtered version of jr with 
cut off 50. 

Finally we created a 3D breas tphantom,  see Fig. 1. I t  consists of fat, 
glandular tissue, a tumor  and a cyst. The breast  is suspended in a cube of 
sidelength 12 cm which is filled with water. Fig. 1 shows on the left hand side 
three vertical cross sections, taken at  distances 3m apar t .  / is given by 

jr - c2C°2 1 - i 2~C0k___.~ (4.2) 

with co = 1500 m sec -1 the speed of sound in water. The  values of c and a 
(at 1MHz) are (k in units of m - I )  

C m d b  tissue [~7~e~] a [m]  Re jr Ira jr 
fat  1458 41 0.058 -9.4/k 
glandular tissue 1519 80 -0 .025  - 1 8 . 4 / k  
tumor  1564 118 -0 .080  -27.2/k 

i cyst 1568 10 -0 .084  -2.3/k 

Since the top face of the cube is not accessible, we have to modify the  finite 
difference method  (3.1). We stipulate the boundary  condition Ow/Ov = 0 on 
the top face of Y2j, i.e. we let n run f rom - q  to q and put  w,,m,q+l = w,,m,q-1. 
The boundary  value problem (2.5) for z has to be  changed accordingly. Of 
course this procedure  is questionable, but  at  the present s ta te  of our work we 
just  don ' t  know anything better .  

We generated da ta  for p = 32 equally spaced directions in [0, 2r] using 
our initial value me thod  with q = 32, i.e. h = 6cm/32 = 1.875mm. For 
4 directions, the projections are displayed on the right hand side of Fig.1. 
The  frequency of the iradiating waves was chosen to be 250 KHz, i.e. k = 
10.47cm -1. This corresponds to a wavelength of 6mm. The  smallest t umor  
is at  the resolution limit, i.e. his d iameter  coincides with the wavelength. 
After  three sweeps of our algorithm we obtained a reconstruct ion in which 
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Fig 1: Breast phantom and data. Left we see 3 vertical cross sections 

tlu'ough the suspended breast. Right we see the projections from 4 

direct ions. 
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f 

Fig 2: Breast phantom and reconstruction. 

Top row: Original (same as in Fig. 1). 

Middle l'OW: Reconslructions 

Bottom: Lille plot of original and reconstruction along a horizontal 

line hilting tl~e smallest lunlor in the central cross section 
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Fig 3: 3D senlitransparent visualization of original (top) and reconstruction 

(bottom). Real part left, imaginary part right. The two little tumors show up 

clearly in the real pro1 but are invisible in the imaginary part. This 

distinguishes them fiom the three cysts which can be seen both in the real 

and the imaginmy part. 
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the cyst and the tumor  where clearly visible and distinguishable. The results 
are shown in Fig. 2. In the top row we see the cross sections of Fig. 1. In the 
middle row we see the reconstructions of these cross sections. The b o t t o m  
row shows a line plot of the original and the reconstruction for the horizontal 
line in the central cross section hitting the smallest tumor. The comput ing 
time per sweep on a SPARC 20 was 10 minutes. 
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A b s t r a c t .  This work is devoted to determine appropria te  domain and range of the 
forward map from the coefficients to the solutions of the multi-dimensional wave 
equation for which the forward map at tains certain regularity properties.  The first 
result concerns an explicit upper bound of its linearization or formal derivative and 
the properties of the coefficients on which the bound depends. In view of results for 
the smooth coefficient case, the est imate is optimal. We then present recent results 
on continuity and differentiability of the forward map as well as continuity of the 
linearized forward map. Information concerning regularity properties of the forward 
map is indispensable in the study of the inverse problem via smooth optimization 
methods. The usefulness of our results and some directions for future research are 
also discussed. 

1 I n t r o d u c t i o n  

T h e  l inear  acous t ic  wave equa t ion  governs  m a n y  phys ica l  processes  such as 
se ismic  and  acous t ic  wave p r o p a g a t i o n  

(10  ) 
[2 0t 2 z ~ - V ~ . V  u = f . 

Here (r = c~(x) is the  l o g a r i t h m  of  the  densi ty ,  c = c(x) is the  sound  speed  of  
the  m e d i u m ,  and  f = f ( x ,  t) is the  source t e r m  which in t roduces  the  energy  to  
the  p r o b l e m .  I f  c~, c and  f are given a long wi th  a p p r o p r i a t e  side cond i t ions ,  the  
fo rward  (or d i rec t )  p r o b l e m  is to  d e t e r m i n e  u = u(x ,  t) ,  the  excess pressure .  
For  a p p r o p r i a t e  choices of  (r, c, and  f ,  u is d e t e r m i n e d  un ique ly  by  s t a n d a r d  
l inear  hype rbo l i c  theo ry  of  p a r t i a l  d i f ferent ia l  equa t ions  (p.d.e.). T h u s  the  
p r o b l e m  s t a t e d  above  defines a m a p  f rom the  coefficients to  the  so lu t ion  of  
the  wave equa t ion .  We are concerned  wi th  some aspec t s  of  the  regularity 
of  th is  m a p ,  and  especia l ly  of  i ts  c o m p o s i t i o n  wi th  the  t race  on a t ime- l ike  
hypersur face .  

T h r o u g h o u t ,  we shal l  res t r ic t  ourselves  to  the  spec ia l  case of  c o n s t a n t  
ve loc i ty  c. A n  ex tens ion  of  the  ideas  to  more  genera l  p r o b l e m s  will  be  br ief ly  

d iscussed in Sect ion 3. 
To fix ideas,  wr i te  x E R n as (x ~,x,~), where  x ~ E R ~ -1 ,  xn E R .  We 

as sume  t h a t  the  p r o b l e m  is set in the  whole  space R ~ and  u = 0 in the  



227 

past (t < 0). Take f (x ,  t) = 5(x, t) as an ideal point source. Thus the excess 
pressure u is the retarded fundamental  solution: 

- w .  v .  = t) t)  e R "  x R ,  

u = 0  t < 0 ,  

where [] is defined to be 0~ - A, and A is the Laplacian. 
It is somewhat easier to understand the sensitivity of the solution to 

distant perturbations of the coefficients. Thus we will assume that  the density 
~r and its perturbations are supported in the half space {xn > 0} and study 
the solution near the boundary {x~ = 0}. 

Define the forward map F as: 

F : o ' - - +  (¢u) I=.=o, 

where ¢ • C ~ ° ( a  n+l) is supported inside the conoid {t > I~l} and near 
= 0 } .  

F is nonlinear even though the direct problem is linear. As a first step 
toward understanding the regularity of F,  we study the formal linearization 
(or formal derivative) DF, with respect to the reference state (a0, u0). The 
first order perturbat ion theory gives, for a small change 5~r, the following 
problem for the resulting change 5u in u: 

D6u -- Vcr 0 • V(fu = V(~  • Vu0 , 

5u=O t < 0 .  

The formal derivative DF(c~o) with respect to the reference density q0 is 
defined by 

DF(~o)¢I~ = (¢(fu)I,r,~=o • (1) 

Our first goal is to determine appropriate spaces of the domain and range of 
F for which 

the formal derivative DF is bounded. 

We are also interested in establishing continuity and differentiability esti- 
mates of F and continuity estimates of DF. 

The study of the forward map is motivated by the inverse problem which 
arises in reflection seismology, oil exploration, ground-penetrating radar, etc. 
A highly over simplified version of the inverse problem is to determine the 
coefficient (r by knowing additional boundary value conditions of u. Since the 
inverse problem is just  to invert the functional relation F ,  we are naturally 
interested in all the properties of this forward map. 

To understand the problem, let us look at a simple exploration seismology 
experiment: Near the surface of the earth, a seismic source is fired at some 
point energy source. The seismic waves propagate into the earth. Since the 
earth 's  structure varies (as do its physical properties) part  of the energy of 
the wave will be reflected back to the surface and can be measured. The 
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inverse problem is then to deduce the interior properties of the earth from 
the recorded data. 

A simple model of this reflection seismic inverse problem in this context 
is: given da ta  Fdaea(x',t), find a coefficient cr(x) so that  

= Fdo,o 

or perhaps minimizing the error (Fd~,~ - F(o')) in some suitable norm. An 
overview of various issues on formulating and solving the optimization prob- 
lem may be found in Santosa and Symes (1989). Two questions arise imme- 
diately: 

- Since the forward map F is nonlinear, one naturally considers its lin- 
earization. So far, most progress has been made through the study of the 
linearization. However, it seems that  very little work has been done to 
justify this commonly used procedure. Does the linearization of F pro- 
vide useful information in recovering the density? 

- The large size of the typical data  set demands fast means of solving 
the minimization problem. A natural candidate would be some Gauss- 
Newton like method. Under what conditions can one formulate such an 
algorithm? 

To answer either one of the above questions requires the understanding of 
regularity of the forward map. In addition, local properties of the inverse 
problem may be obtained by examining the differentiability of the forward 
map. Also, continuity properties are crucial in the study of linearized forward 
map with respect to a nonsmooth reference density. 

Numerical solution of this inverse problem by means of Newton's method  
and its relatives, such as the quasi-Newton, conjugate gradient, and variable 
metric methods, requires a choice of Banach space structure in the space of 
models cr and in the space of data  F ( a )  in such a way that  F is regular. 
This fact accounts for our reliance on the L2-based Sobolev spaces. Here, 
we study the regularity properties of F:  boundedness of DF,  continuity and 
differentiability of F,  and continuity of DF.  We believe that  the ideas will 
also allow investigation of coercive properties of D F ,  i.e., the stability of 
linearized forward map, as is required by the theory of optimization. 

When the spatial dimension is one or c and a depend only on x~ (layered 
problem) there is a large literature available. For a similar problem in which 
the medium was assumed to be excited by an impulsive load on the surface 
{x,~ = 0} instead of point sources, the properties of the forward map have 
been studied fairly satisfactorily by Symes and others (see Symes (1986a) for 
references). It was shown by Symes that ,  in the constant wave speed case, 
the forward map defines a Cl-dif feomorphism between open sets in certain 
Hilbert spaces by applying the method of geometrical optics together with 
energy estimates. 
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When the spatial dimension n > 1 and c, g depend on all space vari- 
ables (nonlayered problem), very little is known in mathematics.  See Symes 
(1983b), Symes (1986b), Sacks and Symes (1985), and Rakesh (1988), Bao 
and Symes (1996), and Bao (1996) for some partial results. The difficulties 
are essentially due to the ill-posed nature of the timelike hyperbolic Cauchy 
problem and the presence of nonsmooth coefficients. For the one dimensional 
wave equation, both coordinate directions are spacelike, which indicates that  
the problem is hyperbolic with respect to both directions. Apparently, this 
is not the case when the spatial dimension is larger than one. Recently, in 
the study of this class of inverse problems and other close related problems 
Bao and Symes (1993, 1995, 1996), we have employed nonsmooth microlocal 
analysis techniques of Beals and Reed (1982) to obtain the optimal timelike 
trace regularity under weaker hypotheses on the coefficients. Using these mi- 
crolocal analysis techniques, we establish new estimates on the regularity of 
the forward map and the continuity of its linearization. 

Rakesh (1988) studied a related linearized velocity inversion problem with 
constant density and point sources. Assuming smooth background velocity, 
he obtained both upper and lower bounds for the linearized forward map. 
The essential observation in Rakesh's work is that  D F  is a Fourier integral 
operator. The calculus of Fourier integral operators employed in Rakesh's 
work is not applicable to the nonsmooth reference velocity case since the 
linearized forward map is a Fourier integral operator only when the reference 
velocity is smooth. The approach does not lead to any regularity result for 
the forward map F. Nonetheless, for integer 1 + (n - 1)/2, the regularity 
estimate for O F  in Theorem 2.1 (loss of (n - 1)/2 derivatives) is exactly the 
same as that  proved in Rakesh (1988), and is optimal. 

Symes (1983a) gave a pair of examples, based on the geometric optics con- 
struction, which show that  both DF(1) and DF(1) -1 are unbounded for a 
slightly different problem. As the examples show, within the Sobolev scales no 
strengthening or weakening of topologies of the domain and range can make 
both D F  and D F  -1 bounded. This fact also implies a strategy of regulariza- 
tion: Change the topology in the domain so that  D F  becomes bounded, then 
ask for optimal regularization of D F  -1 in the sense of best possible lower 
bound estimate for DF.  In both examples of Symes, the unboundedness was 
caused by rapid oscillation of g in the z~-direction or the tangential direc- 
tions, hence the problem is actually "partially well-posed", i.e., only more 
smoothness of the coefficients in tangential directions (essentially grazing ray 
directions) will be required to cure the difficulty. For this reason, the results 
of Sacks and Symes (1985) were formulated using the anisotropic Sobolev 
spaces. 

In Theorem 4.1 of Sacks and Symes (1985), they showed by using the 
method of sideways energy estimates that  for a linearized density determina- 
tion problem with constant velocity and plane wave sources, D F  is bounded 
from H 1,1 to H 1, provided that  the reference coefficient is in H 1'8 for some 
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s > n + 2. They also proved the injectivity of DF.  An extension of their 
reasoning shows that D F  is bounded from H ~'1 to H t provided that  ~ is in 
H t'" for s > n + 2. Since H l,' C H l+' and H 1,8 ~ H q for q < l + s, the reg- 
ularity condition on ~r0 in Theorem 2.1 is compatible with that  of Sacks and 
Symes (1985). The bounds on D F  are compatible as well, allowing for the 
difference between plane wave and point sources. We point out that  in this 
setting several regularity results of F were also established in Symes (1983b), 
Symes (1986b). Our method is completely different from theirs. In particular, 
we believe that  our method could be extended to study the velocity inversion 
problem, i.e., to determine c(x) when the density is fixed. 

2 R e s u l t s  

For a real number a,  denote [a] the smallest integer such that  a < [a]. 
We obtain the following up-bound estimate for DF.  

T h e o r e m  2.1 Assume [l + (n - 1)/2] > 1 + n/2,  and that s > [l + (n - 
1)/2] + [(n - 1)/2] + n /2  + 2. Then for ~ro, 5~r E C ~ ( { x n  > 0}), 

I IDF(~o)~ l l z  _< Cl l~ ' l l [ t+ .~a  I , (2) 

where the constant C depends on the II~0ll~ and the support of ¢, but is 
independent of ~ .  

The proof is given in Bao and Symes (1996). Our proof is based on the 
method of nonsmooth microlocal analysis. Here we sketch the general proce- 
dure of our method: 

First, our time-like trace regularity theorem in Bao and Symes (1993) 
indicates that  5ulna=0 can be as regular as 5u itself, provided that  microlocal 
restrictions against the tangential oscillations of the coefficient ~0. In addi- 
tion, an explicit estimate is available via the method of microlocal energy 
estimates. Thus the problem may be reduced to estimating 11¢Sull[t+(,_ 1)/2]. 
A dual problem may be introduced next, which is a time-reversed wave equa- 
tion with a smooth right hand side compactly supported near {an = 0} and 
inside the characteristic "cone". This right hand side can be used as a test 
function to estimate the local norm of 5u. Observe that  the original differ- 
ential equation for 5u has a singular right side since u0 is the fundamental  
solution. 

The crucial part  is to analyze the smoothness of u0 and the solution 
to the dual problem microlocally. A microlocal cut-off technique is used to 
decompose the problem into three parts and analyze each part  separately. 
Near a null bicharacteristic, the solution of the dual problem can be analyzed 
by the propagation of singularity theorem with an estimate. In the region 
inside the light cone, the problem requires the regularity of the fundamental  
solution u0. To serve this purpose, the method of progressing wave expansions 
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or the method  of geometrical optics is employed. An impor tan t  step is to 
analyze the solution regularity through a regularity s tudy of the resulting 
t ranspor t  equations. Finally, conormal properties of the wave opera tor  are 
developed to est imate the remaining part .  

We next examine the continuity and differentiability propert ies  of  the 
forward map.  

Let ch and ~r0 be the densities corresponding to the excess pressure ul 
and u0 respectively, we have from the model equation tha t  

( ~ - V ~ I . V ) ~  = V ~ o - V u 0 ,  
~ = 0  t < 0 ,  (3) 

where ~ = Ot 2 - A, ~ = ul -- u0, and ~cr = cr 1 - cr o. Moreover, 

(¢~)1~.=0 = (¢ul)1~°=0-  (¢u0)l~°=0, 

where ¢ E C ~  supported inside {t > Ixl} and near {x~ = 0}. 
In the following s ta tements  of theorems, we always assume tha t  

[I + (n -- 1)/2] > 1 + n /2  and r > [l + ( n -  1)/2] + [ ( n -  1)/2] + n /2  + 2 .  

Let Mr > 0 and define 

M r  = {~ c cg~{x. > 0}, I1~11~ < Mr}.  

We also assume tha t  the density and its per turbat ions  are suppor ted  in 
the half space {x~ > 0}. 

T h e o r e m  2.2 There exists a constant C depending on Mr and the support 
o re  so that for ch and ~o E AdT , 

I IF(o-1) - f ( o o ) l l z  < C I I o~  - Oo I1[~+_~_.~.]. 

The following results concern the differentiability of the forward map .  The 
formal  linearization D F  of the forward m a p  F ,  with respect to the reference 
state (a0, uo), is defined by the linearized problem 

(o - V~0 • V)~u = V ~ o .  V u 0 ,  
~ u = 0  t < 0  

and 
DF(o'o)5O" = (¢5u) 1~,,=0 • 

Recall tha t  ~ solves (3) and 

F ( O ' l )  - F(o-0) = ( ¢ ~ ) 1 , ~ , ~ = o ,  

then 

where 

F ( o h )  - -  F ( o ' o )  - D F ( o ' o ) ( I o "  = ( ¢ ( ' ~  - 6 u ) ) I = . = o  , 

(D - V~I  - V)(~ - ~u) = V ~ .  V ~ u ,  
~ - ~ u = O  t < 0 .  



232 

T h e o r e m  2.3 There exists a constant C depending on Mr and the support 
of ¢ so that for  cr 1 and cro E M r ,  

IIF(o'~) - F ( o o )  - DF(~o)5~]lt <_ C l l ~ o l l r + ~ l l S o l l c z + . ~ ]  • 

T h e o r e m  2.4 There exists a constant C depending on Mr+I and the support 
of ¢ so that for  c% and ~ro E A/it+l,  

IIF(~l)  - F(~0)  - DF(~0)Z~ll~ < c l l ~ l l r l l 5 ~ l l t ~ + ~ ]  

Note that  the results of Theorem 2.3 and Theorem 2.4 do not imply that  of 
Theorem 2.2 since the estimates depend on higher norms of the coefficients. 

Finally, we present a continuity estimate for the linearized forward map. 
We assume that  

[ l+  ( n -  1)/2] > 1 + n /2  and v > [ l+  ( n -  1)/2] + [ ( n -  1)/2] + n /2  + 3 .  

Let M > 0 and define 

M r  = {~ E C ~ { x ~  > 0}, II~IIT < M}. 

We once again assume that  the density and its perturbations are sup- 
ported in the half space {x~ > 0}. 

T h e o r e m  2.5 (Bao (1996)) There exists a constant C depending on M and 
the support of ¢ so that for crl and ~ro E A/lr. Then for  q E C~°{xn > O} 

IIDF(c~I)~-DF(~o)~II~ < C[llol-ooll tz+_~_q II'JIIr+ll'711t,+-~] Ilcrl--O'ollr] • 

In particular, D F  extends to a Lipschitz continuous map: 

cr --+ DF(cr) 

g :omp(R  n-1 × [0, oo) ) -+  f_.[Hromp(R n-1 × [0, (x~)), H t ( R  n - ]  × [0, oo)]. 

The proofs of the above regularity results follow essentially the general 
ideas of Bao and Symes (1996) with some necessary modifications. Particu- 
larly, the regularity study of transport  equations becomes more complicated 
and technically involved. 

3 D i s c u s s i o n s  

It is known that  the method of nonsmooth microlocal analysis can only deal 
with relatively weak singularities and the coefficients should be at least con- 
tinuous. However, an earlier result of Bamberger et al (1979) on the one 
dimensional inverse problem with regular source terms allows the coefficients 
to be discontinuous or even bounded measurable. A similar multi-dimensional 
inverse problem with rough coefficients was recently studied by Fernandez et 
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al (1993). Their  general approach may be viewed as variational. The method 
in the several dimensional case was based on elliptic type energy estimates 
together with compactness arguments. However, no geometric property of the 
wave operator  was used due to the rough coefficients. This presents a clear 
contrast to our model. Our model involves a singular right hand side but  rel- 
atively regular coefficients (see the assumptions of the above theorems). Also, 
our approach relies heavily on the geometric properties of the wave operator.  
Therefore, a natural  question arises: What  happens when the coefficients are 
in the regime in between those of the two models? It remains to see whether 
the inverse problem in the regime could be studied by combining these two 
different methods - perhaps an interpolation technique. 

Up to now, we only study the density determination problem. A more 
interesting problem is to study the dependence of the boundary values of 
the pressure field on the velocity c. At present, no regularity result for the 
multi-dimensional velocity inversion problem is available. 

Denote d0(x) = Co2(X), where c0(x) is the reference velocity. Further we 
assume that  0 < C1 < do(x) < C2 with fixed constants C1 and C2. Consider 
the linearization of the model with respect to the reference state (do, u0): 

do(x)O2t 6u(x, t) - A6u(x,  t) = -6d(x)O2t uo(z, t) , 

6 u = O  t < O .  

With a smooth reference velocity, Rakesh (1988) showed that  for 6u E R~ = 
g'{z E R";  z .  > c}, 

H~+(,~- t)/2 OF(do) : --comp --4 H[o ~ is bounded ,  (4) 

and further, under certain geometric conditions, there exist a properly sup- 
ported pseudo-differential operator Q of order 0 and a function ¢ E C o (R~),  
such that  

IIQ,~d[]~ _< C{llCDF(do),fdll~_(._~)/2 + I[~dll~} (5) 

for all 6d E C ~  (K),  where I£ is a compact set of R~, ]1" I[j denotes the norm 
of the Sobolev space H j, and l, s are real numbers. His proof was based on 
an impor tant  observation: 

OF(do) is a Fourier Integral Operator (FIO) for smooth do,  

together with the full machinery of calculus of FIO. Unfortunately, the tech- 
nique is no longer available with the appearance of the nonsmooth reference 
velocity since in this case the linearized forward map is not a FIO. The diffi- 
culties seem clear: nonsmooth principal symbols, more complex ray geometry, 
and possible appearance of caustics. A challenging open problem is to deter- 
mine the amount  of smoothness of do for which the results (4) and (5) remain 
valid. On this problem, we have made some progress recently. The time like 
trace regularity result, the calculus of nonsmooth symbols, and our theorem 
on propagation of singularity for pseudo-differential operator equations with 
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nonsmooth  principal parts  in Bao and Symes (1995) are expected to be use- 
ful for solving the velocity inversion problem. Note tha t  our symbol  calculus 
generalizes the one of Beals and Reed (1984), in the sense tha t  it is more 
suitable for the s tudy of linear part ial  differential equations. 

The  reader is referred to Lewis and Symes (1991) for regulari ty results 
of the velocity coefficients to solution m a p  and its linearization in the one 
dimensional case. 
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D e v e l o p m e n t s  in Numer ica l  M e t h o d s  
for Transient Scatter ing P r o b l e m s  

Patr ick Joly i 

INRIA, Domaine de Voluceau, Rocquencourt, 78153, Le Chesnay Cedex, France 

1 I n t r o d u c t i o n  

In recent years, solving t ime dependent  problems of scattering by an obstacle 
has received considerable attention.  Some facts are now commonly admit ted:  

- The time discretization must  lead to schemes which are explicit. Indeed, 
although one has now at our disposal efficient i terative methods for the 
solution of linear systems, the inversion of a matr ix  at each t ime step 
must be prohibited, in part icular  because of the very huge size of the 
problems one generally has to deal with, especially in dimension 3. 

- For a lot of applications, the usual second order methods are considered 
as insufficently accurate because of the numerical dispersion they induce. 

In this talk, we shall discuss some methods  for the space discretization of 
the equations of the problem which lead to explicit and possibly higher order 
methods. Among the various techniques that  have been used and studied 
in the past, the finite difference me thod  is one of the most  at t ract ive.  This  
method uses a regular grid and hence is very efficient from the computa t ional  
point of view. However, its great disadvantage is that  it creates n u m e r i c a l  

d i f f r a c t i o n  when the obstacle boundary  does not fit the grid mesh (see Fig. 
1), which will necessary be the case as soon as the obtacle has a complex 
geometry (i.e. as soon as it is not a reunion of rectangles in 2D). 

A possible solution to this drawback is the use of a finite element method.  
The finite element mesh can follow precisely the boundary  of the object  (see 
Fig. 2). 

Nevertheless, some drawbacks are introduced. In particular,  to obta in  an 
explicit scheme, it appears  n e c e s s a r y  t o  u s e  m a s s  l u m p i n g  which is still 
d i f f icul t  to do in the case of h i g h e r  o r d e r  finite element methods,  especially 
for M a x w e l l ' s  e q u a t i o n s .  The  object ive of this presentation is to give an 
overview of two researches devoted to the solution of the difficulties related 
to each of the two approaches : 
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Fig. 1. Staircase approximation of the obstacle 

Fig. 2. Example of the conforming finite element mesh in 2D 

1 N e w  h i g h e r  o r d e r  f in i te  e l e m e n t  space s  for  m a s s  lumping . (Sec t ion  
2) The case of Lagrange elements has been the object of a joint work with 
G. Cohen and N. Tordjman (Tordjman (1995)). We shall emphasize here 
the case of edge elements, which is a joint work with A. Elmkies ( Elmkies 
and Joly (1996)). 

2 F i c t i t i o u s  d o m a i n  m e t h o d s  for  t i m e  d e p e n d e n t  wave  p r o p a g a -  
t i o n  p rob lems . (Sec t ion  3) Such methods intend to preserve the main 
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advantages of finite difference methods while ensuring a bet ter  respect of 
the geometry. The one I present here is the result of a joint work with F. 
Collino, S. Garces and F. Millot (Collino and Joly and Millot (1996)). 

2 E d g e  f i n i t e  e l e m e n t s  a n d  m a s s  l u m p i n g  f o r  M a x w e l l ' s  

e q u a t i o n s  

2.1 I n t r o d u c t i o n  

Edge finite elements such as they were introduced by N6d~lec (1980) (see also 
N~d~lec (1986)) are well known for providing natural  methods for solving 
Maxwell's equations. Indeed, from a mathematical  point of vue, they give 
spaces which are conforming approximations of the space H(rot, g?) which 
naturally appears in the variational formulation of these equations. On the 
other hand, from a physical and practical point of vue, they allow to take in 
account boundary conditions as well as discontinuities of the electromagnetic 
fields at material interfaces. Moreover, one can then model complex geome- 
tries with the help of triangular (2D) or tetrahedric (3D) meshes. However, 
for such methods, the problem of mass lumping has not received, for the 
moment, a satisfactory solution. The aim of this work is to construct new 
edge finite element spaces which will solve this problem, including the case of 
anisotropic media. For simplicity we shall restrict ourselves to the 2D case. 
Let us consider Maxwell's equations in a homogeneous bidimensional medium 
g? written as a second order system: 

02u 
Ot-- V+rot(rotu)=O x E £ 2 ,  t > 0  (1) 

If Vh is a finite element space, The space discretization of (1) by a finite 
element method in some space Vu C H(rot, ~) results in a second order 
differential system: 

d2Uh 
Mh ~ + AhUh = 0 (2) 

where Mh is the so called mass matr ix whose entries are the L2(/?) inner 
products between basis functions of Vh. Mass lumping consists in a p p r o x i -  
m a t i n g  Mh by  a d i a g o n a l  m a t r i x  in a suitable basis of Vh. In such a case, 
the numerical scheme obtained after t ime discretization is fully explicit, which 
ensures the efficiency of the method, at least if the approximation of the mass 
matrix is su f f i c ien t ly  a c c u r a t e  to preserve the order of the method. In the 
case of the approximation of the scalar wave equation by Lagrange elements, 
this is obtained by calculating the integrals in the terms of Mh by a suitable 
q u a d r a t u r e  fo rmula .  The quadrature  points must coincide with the degrees 
of freedom of the finite element (cf. Tordjman (1995)). In the case of the edge 
finite elements built on squares, the specificity of the basis functions (which 
are actually tensor products) allow to use one dimensional quadrature  rules 
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and the method can be generalized to higher order elements (cf. Cohen and 
Monk (1995)). Nevertheless, in the case of triangular edge elements, such a 
strategy is unsuccessfull even for the first order element. Indeed, i f / (  is a tri- 
angle, the space considered is T~I = {(a l ,  O!2) t -~-/~(X2, --Xl) t, Ctl, OL2, ]~ 6 ]~}. 
To each edge is associated one degree of freedom which is the constant value 
of the tangential component of the vector fields along this edge (of. figure 3). 
If u and v are two basis functions, fK u.vdx is computed exactly using the 

S 1 

$2 M~ $3 

Fig. 3. Reference edge finite element of first order. 

following quadrature rule: 

~ u.vdx- mes(K) ~ u(Mi).v(Mi) (3) 
3 /=1 

Let us make appear the tangential and the normal components of u et v on 
each edge: 

Ku.vdx_ mes(K) 3 mes(K) 3 
Z + - - V - -  (4) 
i=i i=I 

If u • v, ur(Mi)vr(Mi) = 0 because of the definition of the degrees of 
freedom but in general, u,(Mi)v,(M~) # O. Thus, the failure of mass lumping 
can be at t r ibuted to the fact that  only the tangential components of the vector 
field are degrees of freedom. 

2.2 N e w  triangular finite e lement  

The problem of mass lumping for edge elements has been recently approached 
by Haugazeau and Lacoste (Lacoste (1994)). However, their approach is not 
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completely satisactory since their applicabili ty depends on the nature  of the 
mesh and is restricted to lower order elements. In this work, we choose a 
completely different procedure based on the ideas of Tordjman (1995) for 
Lagrange elements. It  consists in i n c o r p o r a t i n g  t h e  n o r m a l  c o m p o n e n t s  
in the set of the degrees of freedom. We are led to enrich the T~I space and 
to introduce ~1 -- T¢1 • [wl, w2, w3] where the w~ are P2 vector fields whose 
tangential  component  vanishes on 0 K ,  in order to keep the conformity in 
H(rot) (cf. figure 4). More precisely, if (i,j, k) is a permuta t ion  of (1, 2, 3), 

w~ = ~ j ~ k V ~  

Tha t  is also for this purpose that ,  for the construction of the new finite 
element space, we do  no t  e n f o r c e  t h e  c o n t i n u i t y  o f  t h e  n o r m a l  c o m -  
p o n e n t  of the field across the edges and we define the new approximat ion 
space: 

Ph = {vh c tarot, K 

Therefore we have three degrees of freedom per edge, one tangential  com- 

S 1 

$2 M~ $3 

F i g .  4. 2D new finite e lement  (first order) .  

ponent and two normal components  (see Fig. 5). Let us emphasize the fact 
that ,  in an anisotropic medium, mass lumping is "almost" realized since one 
is reduced to the inversion of local 3 x 3 linear sys tems.The procedure can 
be generalized to higher order elements. The  degrees of freedom which are 
moments  on edges or triangles must  be replaced by points values at some spe- 
cific locations which will coincide with quadra ture  points. The  new difficulty 
is thus to find a quadrature  formula so tha t  one does not lose any accuracy. 
In order to get this p r o p e r t y ,  we can play on the weights of the quadra ture  
fomula but  also on the location of the interpolation points. Let us describe 
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( i )  

( j )  ( k )  

Fig. 5. basis function w~ (left) and triangular mesh for 7~1 (right). 

how we proceed for second order and th i rd  order  elements (see also Figure  6). 

S e c o n d  o r d e r  e l e m e n t :  the usual Nfidfilec space 7~2 C (P2) 2 is increased 
by 6 cubic vector  fields and the locat ion of  the  new in terpola t ion  points  are 
given by 

M i j  = ozSi + (1 - a ) S j  with  a - -  
2 22 (5) 

G barycenter  of I4. 

and we use the following quadra tu re  formula,  exact  on P3: 

~ fdx "~ mes(K) { w~Ef(Mi, j  ) + wJ(G) } 
i , j  

11 9 
with w.~ - 240 and w~ = ~ .  

T h i r d  o r d e r  e l e m e n t :  the usual N~d~lec space T¢3 C (P3) 2 is increased 
by 9 quadric  vector  fields and the locat ion of  the new in terpola t ion points  
are given by 

Mij  = aSi  4- (1 - a)Sj and  a -- 
1 ~/1785 + 1 6 8 v ~  

2 126 

G~ = ~S~ + ~-2 ~ SJ 
} _ ~  1 2vff + sk with/3= g+ 2--]- 

and we use the following quadra tu re  formula,  exact  on Ps:  

~ f dx ~_ rues(K) { wmEf(  M~,j ) + waEf(Mi ) + wgEf(G~) } 
i , j  i i 

(6) 

7(1246 - 197 v~)  4(49 v/7 - 50) and w 9 - 7(14 - v ~ )  
with w.~ = 361440 ' (z)a : 11295 720 
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S 1 M~~M22 
M3z G e,  i 

"~Z ~n n ~ _ ~  

S z MH "~ Mlz "~ $3 

S 1 

S~ z z S~ M,, ~ M,~ 

Fig. 6. New 2D triangular finite elements: second order (left) and third order 
(right). 

Let us also mention that ,  with the same method,  we can construct  new edge 
finite elements on quadrangular  meshes which are an al ternat ive solution to 
the mass lumping problem to those of Cohen and Monk (of. Cohen and Monk 
(1995)), with the advantage of succeeding to lumping the mass mat r ix  in the 
case of anisotropic media. 

2.3 D i s p e r s i o n  a r ta lys i s  

As we said previously, one of the main impor tan t  features in the analysis of 
numerical methods for linear wave propagat ion is the s tudy of their numeri-  
cal dispersion on a regular mesh. We have considered below a uniform mesh 
made of rectangle triangles. On figure 7, we plot the variations of the adimen- 
sional phase velocity of a numerical plane wave (i.e. the ratio between the 
numerical phase velocity and the exact one) as a function of the inverse ot the 
number  of meshpoints  per wavelength. The different curves on each picture 
correspond to various propagat ion direction: this il lustrates the anisotropy of 
the schemes. It  turns out that  in the case of the t r iangular  finite elements of 
first and second order, we get a dispersion error which is O(h 2) and O(h 4) 
respectively. For the first order quadrangular  element, we get a dispersion 
error which is O(h 2) and appears  to be smaller than  the one obtained with 
the Cohen-Monk's  method.  
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Fig. 7. Dispersion curves - Triangles: first order (top-left), second order (top-right), 
squares: first order (bottom) 

3 A f i c t i t i o u s  d o m a i n  m e t h o d  f o r  t i m e  d e p e n d e n t  
s c a t t e r i n g  p r o b l e m s  

3.1 I n t r o d u c t i o n  

Even when one can lump the mass matrix, one may prefer to use finite dif- 
ference type meshes for various reasons (ease of implementation, bad sta- 
bility condition induced by small elements in unstructured meshes,...). The 
fictitious domain method appears as an alternative method to finite ele- 
ment methods for solving time-dependent scattering problems. Such methods 
have been shown recently to have interesting potential for solving compli- 
cated problems (Astrakmantev (1978), Atamian and Glowinski and Periaux 
and Steve and Terrason (1989), Atamian and Joly (1993), Kuznetsov and 
Marchuk and Matsokin (1986), Finogenov and Kuznetsov (1988) Glowinski 
and Pan and Periaux (1994)), particularly in the stationary case. 
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The fictitious domain method,  also called domain embedding method,  
consists in extending artificially the solution inside the obstacle so tha t  the 
new domain of computat ion has a very simple shape (typically a rectangle 
in 2D). This extension requires the introduction of a n e w  v a r i a b l e  d e f i n e d  
o n l y  a t  t h e  b o u n d a r y  o f  t h e  o b s t a c l e .  This auxiliary variable allows 
one to t a k e  i n to  a c c o u n t  t h e  b o u n d a r y  c o n d i t i o n .  It  can be related to 
a singularity across the boundary  of the obstacle of the extended function. 
This idea will be developed in section 3.2. The main point is tha t  t h e  m e s h  
for  t h e  s o l u t i o n  on the enlarged domain can be c h o s e n  i n d e p e n d e n t l y  
o f  t h e  g e o m e t r y  o f  t h e  o b s t a c l e .  In part icular ,  the use of regular grids or 
structured meshes allows for simple and efficient computat ions.  

Of course, we have to pay for this advantage in terms of some additional 
computat ional  cost due to the determinat ion of the new boundary  unknown. 
However, the final numerical scheme appears  to be a slight per tu rba t ion  of 
the scheme for the problem without obstacle so tha t  t h i s  c o s t  m a y  b e  
c o n s i d e r e d  as m a r g i n a l .  From the theoretical point of view, the conver- 
gence of the method is linked to the obtention of a uniform inf-sup condition 
which leads to a compatibil i ty condition between the boundary  mesh and 
the uniform mesh (see Girault  and Glowinski (1994)). Theoretically, it im- 
plies tha t  the two mesh grids can not be chosen completely independently,  
but in practice this is not a real constraint .  Another  impor tan t  point is tha t  
the stability condition of the resulting scheme is the same as the one of the 
finite difference scheme. For simplicity, we have chosen to reduce our presen- 
tat ion to the scalar wave equation but the extension to Maxwell 's  equations 
is straightforward. 

3.2 P r e s e n t a t i o n  o f  t h e  m e t h o d  

We consider first the scattering of a wave by an obstacle O, O C a d with 
d = 2 or d = 3. The solution is governed by the wave equation in D, the open 
complement of the obstacle with a Dirichlet condition on the boundary  (see 
Fig. 8): 

02u 
~ -  - A u  = 0 in  D ( 7 )  

u = 0 on 7 = OD. 

The incident wave is generated by initial conditions at t ime t = 0 given 
by 

u(x,O) = Uo(X) • H i ( D ) ,  ~-(x,0U 0) = ul(x,O) e L2(D). (8) 

For the sake of simplicity, a Dirichlet condition is assumed on the exterior 
boundary as well. For our purpose, we choose the geometry  of the external  
boundary to be rectangular.  We denote by J2 this bounded domain and by 
C the rectangle g2 U O (see Fig. 8). We want to solve the simple problem 
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CQ2U 
- ~  - A u  = O in  Y2 

Physical 
or 
absorbing 

boundary 

Fig. 8. Geometry of the problem 

described by equation (7) by the fictitious domain method.  Note  that  this 
method can be used also for more complicated problems as the scat ter ing of 
an acoustic or electromagnetic wave in a heterogeneous medium.  

The main idea of the fictitious domain method is to extend u from ~2 to 
the enlarged domain C to a function (still denoted by u for simplicity) with 
H I (C) regularity. More precisely, we look for u in the space 

u • ~" = {v • H I ( c ) ;  v - - - 0  on V}, (9) 

and we define u as the first argument  of (u,),) the solution of the following 
variational evolution problem 

d 
-d~5(u,v) +a(u,v) = b(v,A) Vv • X 

b(u,#) = 0 V# • M, 
(10) 

where X = H I ( C ) ,  M = H-1/2(V),  H = L~(C) and: 

(u,v)  = / c  uvdx (11) 

f 
a(u, v) = / c  VvVu dx (12) 

The bilinear form b(u, p) denotes the duality pairing between H-1 /2(V ) and 
H1/2('~) and is equal to 

= ( , ,  (13) 

In its principle, the fictitious domain method consists in extending the solu- 
tion in the enlarged computat ional  domain and to introduce a new unknown 
at the boundary.  The  main difference with a s tandard  conforming finite el- 
ement approach lies in the fact that  the Dirichlet condition is taken into 
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account in a weak sense. This method has also some relationship with the in- 
tegral equation method in the sense that  the additional unknown A is nothing 
but that  the jump of the normal derivative of u across 7- 

To understand (10), we can for instance consider the time t as a parameter  
02u 

as a data.  We have to solve now the following and the function f - Ot 2 
problem 

- A n  = f in t9 (14) 
u = O  onT .  

It is equivalent to minimizing the functional 

J(v)=Sc(llvvl -f )dx 
over the space V of functions of H1($2) satisfying the constraint v = 0 on % 
which can be seen as the restrictions to ~ of functions of V. It is natural  to 
consider the enlarged minimization problem defined by 

~,cvminJ(f;)= ~ ( l l v f ~ [ ~ -  f~) dz (15) 

where f has been extended to C. It is easy to verify that  the restriction 
of the solution of problem (15) to ~2 is exactly the solution of the problem 
(10). Problem (15) is a minimization problem with an equality constraint.  
Its solution is the first argument of the saddle point of the Lagrangian func- 
tional defined by L(v, #) = J(v) - b(v, it). Writing that the derivative of this 
Lagrangian is equal to zero at the opt imum (u, ~), we obtain: 

a(u,v) = b(v,A) + ( f , v )  Vv e X 

b(u, it) 0 V# E M 
(16) 

02U 
which gives exactly the equations of (10) if we have written f -- Ot 2 . 

3.3 F i n i t e  e l e m e n t  a p p r o x i m a t i o n  

Let Xh (resp Mh) be a finite dimensional subspace of X (resp M).  We ap- 
proximate the variational problem (10) by 

Find Uh E Xh, £h E Mh such that  

~-~(Uh, Vh) + a(Uh, Vh) = b(vh, Ah) VVh E Xh (17) 

b(Uh, #h) = 0 V#h E Mh 
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More precisely, Xh will be a finite element space based on a regular mesh 
in C (for example squares in 2D). On the other  hand, Mh is directly re- 
lated to the geometry of 7 which can be, for instance, discretized into seg- 
ments for 2D problems (see Fig 4). For instance we can take Q1 elements 
for constructing Xh and piecewise constant functions for M~. Let us intro- 
duce {vj, 1 < j < p = dimXh} and {w~, 1 < ~ < q = dimMh} two bases for 
the spaces Xh and Mh respectively. Indeed , we shall have respectively, if h 
denotes the step size of the meshes 

; = o ( - -  1 ) 
h 2 

p = 

a n d q = O ( h  ) i f d  =2 

and q = O ( ~ )  if d =3 

(18) 

Let us define 

- Mh E £ ( X h , X h )  = the p × p matr ix associated to (Uh,Vh) 
-- Ah E £ (Xh ,X~)  = the p × p matr ix associated to a(uh,Vh) 
- -  Bh E £(Mh, X h ) :  the p × q matr ix associated to b(Uh, #h) 

If Uh (resp Ah) is the vector of the coordinates of Uh (resp. Ah ) in the 
basis {vj} (resp. {we} ), we have 

M d2Uh 
h ~ -  + AhU~ = BhAh 

= 0 

(19) 

where B~ is the transpose of Bh. If Mh and Ah can be interpreted respec- 
tively as approximations of the identity and Laplace operators,  B~ can be 
seen as a discrete trace operator  from Xh to Mh. Note that  problem (19) 
appears as a system of ordinary differential equations with an algebraic con- 
straint. This establishes an analogy with problems of fluid dynamics in the 
incompressible case where the free divergence is the constrain. Of course, we 
apply mass lumping (which is very simple in quadrangular meshes) so that  
Mh is diagonal. 

3.4 T i m e  d i s c r e t i z a t l o n  

For time discretization, we consider a t ime step At  and use a three t ime 
step finite difference explicit scheme, which leads to: 

rTn-[-1 Oyyn  n--1  
t~h - -  ~ h  2v V h  : 

= o. 

- -At2MhlAhU~ + At2MhlBhA'~ (1) 

(2) 
(20) 
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To compute the solution explicitly, an apparent  difficulty appears with the 
condition BtU~ = 0. In fact, for practical computations,  this condition is 
replaced by an equivalent equation which results from multiplying the first 
equation by B~. More precisely, (20) can be shown to be equivalent to: 

{ U~ +1 = 2U~ - U ~  - 1  - (At) 2 MhlA~U~ + (At) 2 MhlB~A~ 
(21) 

B M['BhA  = B MZlA U;. 

Finally, let us assume (Uh ~-1, U~) to be known, U~ +1 is computed by the 
following procedure: 

- solve BthMhlBA~ = BthMhlAhU~ to compute A~, 
- c o m p u t e  U~ +1 via ((21)-(1)). 

Therefore, our method appears as a slight modification of the explicit fi- 
nite difference scheme one would solve in the absence of the obstacle (which 
corresponds to the second step above). The additional cost is due to the 
computat ion of the Lagrange multiplier, for which we must invert the matr ix 
Q = BthMhlBh which obviously satisfies: 

- Q is symmetric and positive. 
- The size of Q,(q x q) is very small compared to the size Ah since q < <  p. 
- Q is a sparse matrix with narrow bandwidth. 

Thus, if Q-1 exists, the inversion of Q can be performed by a Cholesky 
factorization or by a conjugate gradient algorithm. There  remains the crucial 
question of the existence of this inverse which is linked to the uniform discrete 
inf-sup condition, 

b(v, A) 
3 C, independent of h such that  inf sup - C > 0 . 

II IIMII IIx 
(22) 

This condition requires a compatibility relation between the two meshes. It 
imposes a condition between the dimensions of the two spaces X~ and Mh. 
Such a condition can be found in Girault and Glowinski (1994). In practice 
the space step used for the boundary mesh must be larger than the one used 
for the mesh of f2. Finally, let us that one can show that our procedure pre- 
serves the conservation of some discrete energy. An important consequence is 
that our scheme is stable under the same stability condition than the usual 
finite difference scheme. 

Actual numerical computations of scattering experiments show the real 
superiority in term of accuracy of the fictitious domain method with respect 
to a staircase approximation of the obstacle. This gain of precision can also 
be analyzed on a simple 1D problem. We refer the reader to Collino and Joly 
and Millot (1996) for more details. 
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A b s t r a c t .  The retrieval of the shape of a cylindrical defect of low conductivity 
buried in a conductive half-space is investigated from aspect-limited, frequency- 
diverse data. The sources of the interrogative fields and the receivers of the scattered 
(anomalous) fields are both placed on the same side of a particular interface. The 
defect is embedded on the other side. We derive an iterative process based on level- 
set methods. This level-set approach has been shown to be effective in treating 
problems with propagating fronts and is based on the ideas developed by Osher 
and Sethian. An iterative process is implemented: at each iteration, the boundary 
of the defect is moving with a speed term which minimizes the residual in the 
data fit. The resulting equation of motion is solved by employing entropy-satisfying 
upwind finite-differences schemes. 

Introduction 

In the well-known problem of electromagnetic inversion of objects in stratified 
environments,  one is interested in reconstructing unkown hidden obstacles in 
known stratified media, see Lesselier and Duch@ne (1996) for more references. 
Here we are concerned with a nondestruct ive evaluation of cracks in metall ic 
structures from aspect-l imited frequency-diverse data.  A typical  applicat ion 
is the eddy current probing of an air void or of an inclusion of low conductivi ty 
in a metal  block of high conductivity, but  other materials  and frequency bands 
can be considered likewise. 

The defects are modeled as infinitely long inhomogeneities with bounded 
cross-section embedded in a semi-infinite, isotropic metal  block of known con- 
ductivity, with air above. The probing of the defect by a known interrogative 
field gives rise to an anomalous field. Da ta  are values of this field which is 
radiated by Huygens-type sources whose support  is the defect only. In the 
Born approximation,  a first-kind integral equation links this field to the ob- 
ject function, here the contrast  between the conductivity at  a given point and 
the conductivity of the embedding. This object  function is real-valued. 

As source and receivers are both  located in air, only reflection mode  da ta  
are available. This aspect-limited configuration enhances the ill-posedness of 
the problem. To compensate,  several frequencies are used. Fur thermore,  the 
defect is assumed to be homogeneous. The contrast  of conductivi ty takes only 
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two values: 0 outside the defect, and a prescribed value inside. The inverse 
problem simplifies: only the shape and location of the defect are sought. One 
major difficulty remains the lack of a priori topological information on the 
defects. Thus, the level-set modeling technique seems appropriate for such 
problems. 

Indeed, since its introduction by Osher and Sethian (1988), the level- 
set approach has been widely used when moving interfaces are dealt with: 
crystal growth (Sethian and Strain 1992), shape modeling (Malladi et al. 
1995) (Caselles et al. 1993). Santosa (1996) has shown the feasibility of such 
an approach in the case of inverse problems involving obstacles such as the 
reconstruction of a diffraction screen. 

What we aim at is to start from an initial contour and find a suitable 
deformation which moves the contour closer to the actual shape of the defect. 
Kass et al. (1988) have proposed a modeling technique for active contours 
using a Lagrangian representation of the front. But this snake model does 
not permit, due to the parametrization of the curves, the treatment of several 
contours simultaneously and also suffers from instability (Caselles et al. 1993). 

The modeling technique of Osher and Sethian uses an Eulerian represen- 
tation of the front. The ( N -  1)-dimensional surface is embedded in a level-set 
function of N space dimensions. The contour of the defect is defined as the 
level-set 0. The hypersurface is then made to flow along its normal direction. 
This evolution is described by the evolution equation. Such a representa- 
tion will handle naturally the splitting of the fronts. ~r thermore,  Osher and 
Sethian have derived a stable numerical scheme borrowed from hyperbolic 
conservation laws to solve the Hamilton-Jacobi type equation. The speed of 
the moving front is synthetized from the minimization of the residual in the 
data fit. The procedure stops when the front is close enough to the actual 
shape of the defect. 

1 W a v e f i e l d  f o r m u l a t i o n  

1.1 Mode l  

The model is the following (de Oliveira Bohbot et al. 1996): a z-orientated 
cylindrical object is embedded in a two half-space configuration, as depicted 
in Fig. 1. The upper half-space D1, (x < 0), is Iossless and homogeneous, with 
permittivity Cl and permeability #1. The lower half-space is lossy with the 
same permittivity cl and permeability #t, and a non-zero conductivity 62. 
The defect located inside D2 is of limited cross-section D in the (x, y) plane. 
It is penetrable with permittivity el and permeability #1, and a constant 
conductivity aD. 

A source at low angular frequency w (time-dependence e x p ( - j w t ) )  placed 
in D1 radiates a known interrogative wave taken for simplicity as a E- 
polarized plane wave (the field has a unique non-zero component along the 
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Fig. 1. Configuration 

z axis) with normal incidence upon the air /metal  interface. In the absence 
of defect D, the interrogative wave creates a known incident field Eo. In its 
presence, the anomalous field EA is measured on a probing line L situated in 
D1 at height J Xo [ at different frequencies wf, f = 1 , . . - ,  Freq and receivers 
Ym, m = 1, • • •, Mes. 

In the Born approximation framework, the two integral equations ob- 
tained by application of the Green's theorem to the Helmholtz equations 
with appropriate boundary conditions, are reduced to a single observation 
equation. This integral equation relates the anomalous field EA and the 
object function of the defect, i.e. the contrast of conductivity X(X, y) = 
a(x, y)/a2 - 1, defined in D2, null outside D and valued to aD/a2 -- 1 inside: 

~2 /D G12(xo,x, ym,y, wf) Eo(x,y,w I) X(x,y) dxdy = EA(xO,Ym,Wl) (1) 

m = l , . . - , M e s ,  f = l , . . . , F r e q  

j 
G12(xo,x, ym,y,w$) = -~ J-oo 

exp [j(132x - ~lXo)] 
exp [jK(ym - y)] dK 

/ 3 h = V ~  h - K  2, ~(flh) ~ 0 ,  h = l , 2 .  

The Green's function G12 represents the field observed at (xo, Ym) in D1 
when a line source is located at (x, y) in D2. kl (resp. k2) is the wavenumber 
of Dt  (resp. D2) and 5 = \ /2/wf#la2 corresponds to the skin depth. 

A plane wave under normal incidence gives an incident wave of the follow- 
ing form Eo(x,y, wl) = Texp(jk2x) in D2, T = 2kl/(kl + k2) is the Fresnel 
transmission coefficient. 
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1.2 Direct problem 

We look for the anomalous field on the probing line induced by a known em- 
bedded defect illuminated by a known interrogative plane wave. Calculations 
are performed by a method of moments with pulse-basis functions and Dirac 
delta weight functions (de Oliveira Bohbot et al. 1996). 

The defect D is divided into M x  × My square cells: JTp,q -= Ap × Aq, 
p = 1,. . .  ,Mx,  q = 1 , . . . , M y  with Ap = [Xp - •x/2,Xp + ~ / 2 ]  and Aq = 
[yq-  Ay/2, yq + A~/2]. In each cell, at a given frequency wl, the contrast 
and the field are assumed to be constant and take values X(Xp, yq) and 
Eo (Xp, yq, w j). The anomalous field is then a simple sum of M x  × My  terms: 

EA (Xo, Ym, wl) = E X(Xp, yq)Eo (Xp, yq, wl) / G12 (Xo, x, Ym, Y, wl)dJ7 (2) 
P'q Y2p,q 

m = 1 , . . . ,Mes , . f  = 1 , . . - , F r e q  

2 D e f i n i t i o n  o f  t h e  c o s t  f u n c t i o n  

In this specific inverse problem, the object function X of the defect is constant 
but of unknown support. What we aim at is to find the shape and location of 
the defect, i.e. the object function X, knowing the electrical properties as well 
as the incident field and the values on the probing line L of the anomalous field 
EA at several frequencies. In the Born approximation, this problem is linear 
but still very ill-posed. Ill-posedness is taken into account by introducing in 
the inversion procedure a priori information about the defect we look for. 
For instance, the contrast of conductivity is purely real-valued. We separate 
(1) into two related real-valued integrals which are defined on D2, the whole 
domain of definition of X. In the following, the function G(x, Ym, Y, wf) will 
correspond to the product ~ G12(x0, x, Ym, Y, Wl) EO(xO, Ym, wf), x0 being 
implied. We have: 

D~G(x,  ym,y, wl) X(x,y) dxdy = ~EA(Ym,Wf ) (3) 

D..~G(x, ym,y,wl) X(x,y) dxdy = .~EA(Ym,W$) (4) 

m = l , - . . , M e s ,  f = l , . . . , F r e q  

Let us define the set C = ]I~ 2×Freq×Mes. In the following, we keep the 
notation ~ and .~ for the real and imaginary part of vectors belonging to C 
such as EA, and we denote by A X the integral operator described in both (3) 
and (4). As the number of data differs from the number of unknowns, we look 
for a solution X in the least-square sense, i.e. which minimizes the following 
cost function: 

1 
J(X) = 5 II A X -  EA 112c (5) 
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The weighted scalar product on £ is 

F r e q  M e s  

M e 8  

= Z IEA(ym, s)I 
7T~ 

3 L e v e l - s e t  f o r m u l a t i o n  

We propose to solve the inverse problem by introducing a level-set description 
of the defect D and by following the evolution of this level-set along the 
iterations (Santosa 1996). This geometric description is an intrinsic one, i.e. 
the evolution of the curves does not depend on its particular parametrization. 
A fix grid can then be used along the iterations. Moreover, the changes such 
as expanding, shrinking, breaking of the fronts will be handled naturally by 
the hypersurface. This hypersurface ¢(x, y, t) is defined everywhere on D2: 

ODt = {(x,y):  ¢(x,y, t)  = 0} (6) 

The inverse problem consists in following the evolution of ¢, given a initial 
surface Do such that the surface Dt "tends" to the actual surface of the 
defect. This inverse problem becomes nonlinear. Indeed, there is a nonlinear 
dependence of X(x, y, t) on ¢(x, y, t): 

Xin : f f D / f f 2  - -  1 {¢(x,y,t)  < 0} = Dt X(x,y,t) l Xout = 0 {¢(z,y, t)  > O} = De\Dr (7) 

Once the initial surface Do is given, we have to find the evolution equation 
of the function ¢. Two constraints are to be satisfied. First, each evolution 
should see the front getting closer to the actual defect boundaries, i.e. the 
cost function of (5) should decrease as time t increases. Second, this level-set 
function can only flow along its normal direction. 

3.1 D e r i v a t i o n  o f  the  cost  func t ion  

Let us look at the derivative according to t of the term of the cost function 
defined in (5) which only involves the real part of (Ax(t) - EA). Let us denote 
this term by ~J(t) and by .~J(t) the other part of the cost function. If we 
assume that the functions under the integrals are regular enough, we have 
from Continuum Mechanics (Cea 1976): 

d~J(t) Frea Mes 
- [ Ax(t) - REAl (Ym, f) 

f m 

fo X~,~ ~G(x, ym,y,wi) (vt" nt) da 
Dt 
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where vt is the velocity of the points on the boundary ODt and nt the outward 
normal to this boundary at time t. Thus, the derivative of the cost function 
is such that:  

dJ(t) f A* - Xi~ [Ax(t) - EA] (x, y) (vt • nt) da(x, y) 
"-~ JoDt 

(8) 

where the adjoint operator A* is A*u(x,  y) =< G(x, . ,  y, .), u >$. 

3.2 Evolution equation of  ~b 

Following the idea of Osher and Sethian (1988), we look at the motion of the 
level-set ODt = {¢(x, y, t) = 0}. Let (x(t), y(t)) be the trajectory of a particle 
located on this level-set. As the points on the boundary of ODt are assumed 
to be only moving along its normal direction, their velocity is v(x, y, t) = 
V(x ,  y, t) nt. The normal vector nt is equal to V¢(x ,y ,  t ) /  I V¢ [. By the 
chain rule and substitution, 

0¢ 
+ v (x ,y , t ) ,  v ¢ ( x , y , t )  = 0 

0¢  (x, y, t) + V(x, y, t) I v ¢  I = 0 (9) 

This equation yields the motion of ODt with normal velocity V on the 
level-set {¢(x, y, t) = 0}. It is referred as a Hamilton-Jacobi type equation. 

3.3 Cho ice  o f  t h e  speed  

We have to define a speed function V(x,  y, t). This speed function must be 
such that  the cost function decreases as time increases, i.e. such tha t  the 
derivative given in (8) is negative. Santosa (1996) gave two possibilities for 
the speed. One is referred as the evolution approach with a velocity: 

V(x,  y, t) = -Xi,~ A* [Ax(t ) - EA] (x, y) (x, y) • ODt (10) 

The other is called the approximation approach and is inspired from the 
Gauss-Newton algorithm: 

A*A V(x,  y, t) = -X i~  A* [Ax(t) - EA] (x, y) (x, y) • ODt (11) 

But, the velocity is not defined for all the points of the domain D2. For 
numerical reasons, we have to extend it to the whole domain. Following (10), 
we arrive at: 

V(x,  y, t) = -X in  A* lAx(t)  - EA] (x, y) V(x, y) • D2 (12) 

A similar extension can be made in the approximation scheme. 
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3.4 Hamilton-Jacobi equation and hyperbolic conservation laws 

If the velocity V(x,  y, t) is assumed to be a constant V, independent of time, 
(9) is a first-order Hamilton-Jacobi equation (Kimia et al. 1995). Let us call a 
generalized solution, a solution which is locally Lipschitz and which satisfies 
this equation almost everywhere. There are many generalized solutions. The 
problem is to pick up the right one, called the viscosity solution. Barles 
(1985) has shown that the entropy solution of an hyperbolic conservation law 
equation is equivalent to the viscosity solution of the corresponding Hamilton- 
Jacobi equation. Sethian has expressed this entropy condition by: Once a 
particle is burnt, it stays burnt, if the boundary is viewed as a burning flame. 
This equivalence is the key of the numerical algorithm presented by Osher 
and Sethian and which chooses the correct viscosity solution. 

The simplest numerical scheme is to replace the spatial derivatives by 
central differences and the time derivative by a forward difference. A selected 
part of the domain D2 in which the defect is assumed to be found, is divided 
into N x  × N y  elementary cells Ai j ,  i = 1, . . .  , N x ,  j = 1 , . . .  , N y  where the 
contrast, the field and the level-set function are constant. We denote by At 
the time step, by Ax and Ay the grid step in x and y. Unfortunately, this 
algorithm fails because it ignores the entropy condition. Osher and Sethian 
keep a forward difference for the time derivative: 

¢(xi, yj, tk+,) = ¢(xi, yj, tk) -- AtH(¢) 

but with a numerical Hamiltonian H(¢) = V(D¢) 2 such that: if V X 0 

max 2 " max _ rain 
D¢ = min (D~-¢, 0) + = =  (D+¢, 0) 2 + min (Dy ¢, 0) 2 + max (D+¢' 0)2 

The standard definitions of the forward and backward difference operators 
are used: 

D Z ¢ ( x .  yj, tk) = 

D~+¢(x. y~, tk) = 

¢(x~, yj, tk) - ¢(x~-1,  yj, t , )  
A x  

¢(xi+l, yj, tk ) -- ¢(X/, yj , tk ) 
AX 

This conservative monotone scheme is an upwind method: the deriva- 
tives are calculated in the direction of the outward flowing normals. Thus, 
boundary conditions for the test domain do not flow backwards and do not 
create spurious solutions. This algorithm gives the correct entropy-satisfying 
weak solution to the moving boundary problem defined by (9) with constant 
velocity and for a given initial hypersurface ¢(x, y, 0). 



257 

4 A l g o r i t h m  

Once an initial shape Do is given, we initialize ¢(x, y, 0) by the distance 
function :t=dist((x, y), ODo), where the minus (plus) sign is chosen if (x, y) is 
inside (outside) the initial boundary. Due to the discretization of the domain 
D2, the integral operator  A is considered in its discrete form: 

r~N~,NY 
z-.~i,j = / r  t) 

L~i,~ X(xi,yj,t)fa,.j 9G(x, ym,y, wl) dxdy] (13) 

Suppose now that  we are at step t = t k . We know the values of X(xi, yj, tk), 
¢(xi,  yj, tk) (as well as of the anomalous field induced by X(xi,yj, tk)) and 
we want to update  those functions. The  algorithm is the following: 

1. At each node (xi, y j) ,  compute the extended speed function V(xi, yj, tk) 
from (12). 

2. Solve (9) to find the update for ¢. Use the numerical algorithm of Osher 
and Sethian as described in Sect. 3.4. 

3. Find the new defect Dt~+~ by constructing the level set ¢ = 0. Deduce 
the values of the contrast at each grid node from (7). 

4. Calculate the anomalous field from this defect following (2). Compare to 
the measured field. If the error is negligible, stop. Otherwise k -- k + 1 
and go back to Step 1. 

In this algorithm, the velocity is evolving with time. This implies that ,  from 
one iteration to the next, the front can go back to positions it already occu- 
pied. This explains the ups and downs of the cost function along the itera- 
tions. No theoretical proof has been found concerning the convergence and 
the type of solution retrieved of such algorithm. 

5 N u m e r i c a l  r e s u l t s  

A material defect of known conductivity (6D : 10 a2) affects a highly con- 
ductive metal half-space (a2 = 107 Sm-1). The upper half-space is air. A 
20 mm long probing line is placed at xo -- 1.5 mm above the metal with 64 
samples taken every 0.4 mm. A limited number of probing frequencies is cho- 
sen on an almost log scale in between 10 and 500 kHz (12, 18, 26, 39, 58, 
86, 127, 188, 278, 411 kHz). The test domain in which the defect is assumed 
to be found is a 2 mm-sided square centered at  1 mm depth from the inter- 
face. This square is divided into 20 x 20 square pixels. The  defect is itself a 
0.8 mm-sided square centered at I mm depth in the test  domain, as shown 
in Fig. 2. The t ime step At  is here equal to 0.001. 

Three different velocities are considered. The first one corresponds to the 
evolution approach, as described in (10). The second one corresponds to the 
approximation approach, as described in (11). The last one is similar to the 
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y Cram) 
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Fig.  2. Exact defect 

a p p r o x i m a t i o n  approach ,  but  a weight ing funct ion  is in t roduced  in order  to  
t ake  into account  the  a t t enua t ion  effect wi th  dep th  (L i tman  et al. 1995); the  
veloci ty  takes  the  fo rm 

V(x,  y, t) = Q(x)W(x ,  y, t) Q(x) = ~(fl) (#x) ~-1 e x p ( - # f l x )  

Q is a g a m m a  dis t r ibut ion  and we choose s o m e w h a t  a rb i t r a r i ly  fl = 1.5 and  
# -- 0.1. Thus ,  the  veloci ty is solut ion of: 

AQ*AQ W(x,  y, t) = --Xin AQ* [Ax(t ) - EA] (x, y) (x, y) E cODt (14) 

where  AQ is the  ope ra to r  defined in (13) mul t ip l ied  by the  Q funct ion,  and  
AQ* its adjoint .  

In  each case, the  initial  con t ras t  cor r responds  to  the  " b a c k p r o p a g a t e d "  
solut ion which has  been  reduced to  b ina ry  values: 

f 
x(z ,  y, o) = [ Xout 

if A*EA(x,y) > 0 
if A*EA(x,y) < 0 

Figure  3 shows the  resul t ing init ial  domain  as well as the  assoc ia ted  level- 
set  function.  

i ~ - w s - r r s s  F T  I F T , ' 7  F T W  I 
:iZ C ir 3 ZCE :(_~ ZC)ZZiZC ZC i(ZO_- L_(3- 
_ I _ J _ _ I ~ _ L L A 2 _ L _ k _ I _ L J _  i I I I I I 

I ~4q ~ ; 4  b~q f-~;q F~ iq -  
I / t 3  E f t  ; 3  F }  I ~ 1 -  -171~ C ] [  -I - I  - 

_L- L IL[_( I I [ ILL ( ILI [3 
_L_ l-i J_L I- i J_L I J_ L J- .~ J- Li- i J 

(a) X(X, y), i t=0 

0 . 0 7  

_ 0 . 0 2  

(b) - ¢ ( x ,  y), i t=0 

Fig.  3. Initial estimates of the contrast and of the level-set 
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The algorithm stops when the residual is lower than a prescribed value, 
here 10 -3 , or when the number of iterations reaches 500. The residuals in the 
data  fit, as shown in Fig. 4, are not decreasing at each iteration as expected. 

o~  

10000 

100 

I I I I 

Evok4ion .................... 
Approximation - -  

Weighted - = 

O.Ol ~ I I I I I 
I I I 7 I I  I I I I 

0 50 100 150 200 250 300 350 400 450 500 
iterations 

Fig. 4. Variation of the residual J along the iterations 

We observe that  the evolution method provides us with a high residual 
and a shape which is very different from the exact one (cf Fig.5.(a)). The  
residual obtained by the approximation method is 100 times lower than the 
previous residual. Still, the solution differs perceptibly from the exact one (cf 
Fig.5.(b)). Finally, the weighted approach gives us a very low residual and a 
shape very similar to the true one (cf Fig.5.(c)). Figure 6 gives an idea of the 
evolution of the level-set, the velocity and the map of the defect at various 
steps in the weighted approach. 

. . • ; . ; . . . . . ; . ;  . ; . ; _ .  , . . . , . . . ,  

(a) Evolution it----500 

I !iii'iiii 1 
(b) Approx. it=500 (c) Weighted it=255 

Fig. 5. Defect found for the different velocities 
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(b) X(x, y), it=100 
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(c) X(x, y), it---200 

o o o 

~o.o2 %. [ i ~ / / ~ o . 0 2  %. ~ \ \ / \ / ~ o . o 2  %. ~ \ / / / \  

(d) -¢(x,  y), it=50 (e) -¢(x,  y), it=100 (f) -¢(x ,  y), it=200 

(g) V(x, y), it=50 (h) V(x, y), it--100 (i) V(x, y), it----200 

Fig. 6. Evolution of the contrast (top), level-set (median) and velocities (bottom) 
for the weighted approach 

6 C o n c l u s i o n  

We have presented here preliminary results of a level-set approach applied to 
the eddy current nondestructive evaluation of defects in a stratified medium. 
Three computational schemes are considered. They only differ by the choice 
of the velocity for the level-set function. Santosa (1996) has successfully used 
the first two (evolution and approximation methods) for the deconvolution 
problem and the diffraction screen reconstruction problem, but they do not 
appear to work here. The third scheme takes into account the fact that  the 
attenuation in the embedding space is very strong and shadows the deep 
parts of the defect. This scheme provides good results here. Notice that  we 
have also implemented this level-set method in a similar acoustic case with 
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no losses involved. In that  case, the approximation method gives much bet ter  
results than the evolution one, while the weighted scheme is obviously not 
useful anymore. 

Thus, the choice of the velocity appears to be crucial to the success of 
the inversion algorithm. Also, the continuous extension of this velocity to 
the whole test domain is a key component of the algorithm. This should be 
one of the points to focus on in the future. There are also other  pert inent  
questions: (i) The linearized Born approximation has been used here to reduce 
the complexity of the problem. It is necessary to consider the full (nonlinear) 
inverse problem in order to generalize the scope of the method. (ii) The value 
of the contrast  of the defect with respect to its embedding is assumed to be 
known. In a more realistic case, this value is itself par t  of the problem. It 
should be seen whether a level-set description can yield both  the shape and 
the contrast  of the defect. 

A c k n o w l e d g m e n t s  

This work was supported under a CNRS-NSF International Cooperative 
Grant  ~INT-9415493, a NATO Collaborative Research Grant  ~CRG-940999. 
Santosa's research is partially supported by the National Science Founda- 
tion under grant ~DMS-9503114, Department  of Energy under grant ~DE- 
FG02-94ER25225, the AirForce Office of Scientific Research URI-RIP grant 
~F49620-93-1-0500 and grant ~F49620-95-1-0305. 

R e f e r e n c e s  

Barles G. (1985): Remarks on a flame propagation model. Technical Report No. 
464, INRIA Rapports de Recherche. 

Caselles V., Catt@ F., Coll T., and Dibos F. (1993): A geometric model for active 
contours in image processing. Numer. Math. 66, 1-31. 

Cea J. (1976): Une m@thode num@rique pour la recherche d'un domaine optimal. 
In: Publication IMAN. Universit~ de Nice. 

Kass M., Witkin A., and Terzopoulos D. (1988): Snakes: active contour models. 
Int. J. Comput. Vision 1,321-331. 

Kimia B.B., Tannenbaum A.R., and Zucker S.W. (1995): Shapes, shocks, and de- 
formations I: the components of two-dimensional shape and the reaction-diffusive 
space. Int. J. Comput. Vision 15, 189-224. 

Lesselier D., and Duch@ne B. (1996): Wavefield inversion of objects in stratified 
environments. From backpropagation schemes to full solutions. In: Review of 
Radio Science 1993-1996 (Stone, ed). Oxford University Press, New York, 235- 
268. 

Litman A., Lesselier D., and De Mol C. (1995): Mapping 2-D defects in a conduc- 
tive half-space by eigenfunction expansions in K-space of Fourier-Laplace trans- 
forms. In: Nondestructive Testing of Materials (Collins et al., eds). IOS Press, 
Amsterdam, 175-183. 



262 

Malladi R., Sethian J.A., and Vemuri B.C. (1995): Shape modeling with front 
propagation: a level-set approach. IEEE Trans. Pattern Anal. Machine Intell. 
17, 158-175. 

de Oliveira Bohbot R., Lesselier D., and Duch~ne B. (1996): Mapping defects in 
a conductive half-space by simulated annealing with connectivity and size as 
constraints. J. Electromagn. Waves Applic. 10, 983-1004. 

Osher S., and Sethian J.A. (1988): Fronts propagating with curvature-dependent 
speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 
12-49. 

Santosa F. (1996): A level-set approach for inverse problems involving obstacles. 
ESAIM: Cocv 1, 17-33. 

Sethian J.A., and Strain J. (1992): Crystal growth and dendritic solidification. J. 
Comput. Phys. 98,231-253. 



A n  I n v e r s e  P r o b l e m  f o r  t h e  T w o - D i m e n s i o n a l  
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A b s t r a c t .  Let D -- {(x,y) E IR2[x > 0, y E IR} and u(x,y,t) be the solution 
of an initial-boundary value problem for the two-dimensional wave equation in 
the half plane D. The half plane D carries a velocity stratification given by fiat 
layers parallel to the boundary of the half plane characterized by a thickness and a 
constant velocity. We consider the following inverse problem: given the initial data, 
from the knowledge of u(0,0, t), t > 0, reconstruct the stratification. We give an 
algorithm to soh,e this problem based on an explicit formula for u(0, 0, t) and we 
report some numerical experience. 

1 I n t r o d u c t i o n  

Let ]R be the set of the real numbers,  k be a posit ive integer and IRk be the 
k dimensional  real euclidean space. Let. D = {(x, y) E LR 2 Ix > 0 ,  y E IR} C 
IR 2. Let n be a non negative integer, let. x j -1  > 0 , cj > 0, j = 1, 2 , . . . , n  + 1, 
be given constants ,  such tha t  cj # c3+1, xj-1 < xj ,  j = 1,2, . . . ,  n and x0 = 0. 
For every x >_ 0 we consider the following piecewise cons tan t  funct ion:  

c(x)=fcj ,  Xj_l<_X<xj, j = 1 , 2 , . . . , n ,  (1) 
Cn+l,  2: ~ Xn,  

t ha t  we call n - j u m p  function.  Let t; .  be the set of the n - j u m p  funct ions  

and g" = U ~:n- 
n>O 

Let n _> 0, c E E . ,  we denote with u,~ the unique solut ion of  the following 
in i t i a l -boundary  value problem: 

b2u"(x,y,t)=div(c(x)Vu,(.r,y,t)) (x,y) e D, t > 0 ,  (2) 
bt 2 

Our 0 t -~( ,u , )=0 ,  y ~ . ~ > 0 ,  (3) 

u.(x,y,O)=6(x,y), (x ,y)  E D ,  (4) 
aun 
~)t (~' y' 0) = 0, (x, ~) ~ 0, (5) 
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where div and V denote respectively the divergence operator  and the gradient 
operator  respect to the variables x, y, moreover 5(x, y) is the Dira¢ delta and 
the solution of (2), (3), (4), (5) must be interpreted as the limit for c --+ 0 + of 
the solution of the same problem with 5(x - e, y) in (4) as initial condition. 

In this paper we consider the following two problems: 

P r o b l e m  1.1 (Direct problem) Given n >_ O, c E £n, find the solution 
u n ( z , y , t )  for (x ,y)  E D, t > O, of the initial-boundary value problem (2), 
(3), (4), (5). 

P r o b l e m  1.2 (Iln'erse problem) Given F(t ) ,  t > 0 find n > 0 and c E g .  
such that F(t)  = u.(O,O,t) for t > O, where u n ( x , y , t )  for  ( z , y )  E D, t > 0 
is the solution of problem (2), (3), (4), (5). 

These problems can be regarded as model problems of some interesting 
questions in several application fields such as: geological prospecting, civil 
engineering, materials technology. 

We note that  Problem 1.2 for a general coefficient c is an ill posed problem, 
here it is "stabilized" with the a priori assumption c E ,f, ,  for some n. 
Moreover Problem 1.2 with the assumption c E g , ,  is ill conditioned and 
must be solved with a special algorithm. We present an algorithna to solve 
Problem 1.2 based on a forlnula that  gives un(0, 0, t), the solution of (2), (3), 
(4), (5) in the n-jump case evaluated at. the origin, in terms of the parameters  
z j -1 ,  cj, j = 1 , 2 , . . . , n  + 1 that  define the function c. Tha t  is u , ( 0 , 0 , t )  is 
given by the following recurrence relation: 

~ , , , , ( o , o , 0  = u . . . .  ~(o,o,t)+ 
Ill-- 1 ty, k m r"'-- t'n'km ~ C I ~  

4 m 0 ~ ~ ~ x/c'" r,,(['y,) t=. 

) 
/=1 

k m 
(Cmtm,£.m__//Cm+l[Cm+lt 2 2 .... I TM . ~ . , , ~ . ,  + (~ , , ,  - ~ , . + ~ ) T , , , ( k m ) ]  

k c m t m , k .  ' + I C m +  l [ c m +  l t 2  2 .m 're,k_" + ( cm Cm+l)T~,,(k,n}]] 

~ C~7,,(~-?') 52 ~, , .  ' t  k - ,  - r l 2 ( k 7  ' )  
/=1 '~ V '-- 

t > O ,  r e = l , 2  . . . .  ,n ,  (6) 

where 
1 a H ( t )  1 1 

. o ( 0 ,  0 ,  t )  - - -  - t > 0 ,  ( 7 )  
7rct dt t 7rcx t 2' 
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H(- )  is the Heavis ide function,  k "~ = ( ~  ,k~ . . . .  k,~), m = 1 , 2 , . . . , n ,  is a 
mul t i - index ,  

~ k '  - r ? ( k ~ )  k~ = 1 , 2 ,  ( S )  
-- C l t l , k ,  ' . . . ,  

j(rn-l,m)j(rn--2,m) j(l,,n) 

E E Z (-W 
j,,,-x=l jm_;=l j a = l  

t=x kt~'l k, jt - 1 J Cv~T77t'+'.-k" x/~Tt,,_~,,* ] 
r,+,Ck,~) + ~,(k,') / 

h 1 ,k 2 , . . . , k i n  : 1 , 2 , . . .  , m :  2 , 3 , . . . , n ,  (9) 

, ~ "  = . . . .  - = . ,  ( 1 0 )  j ( l ,m)=nain{k ' t  '~ kl+l},  l 1,2, m 1, m 1 , 2 , . .  n, 

n ( k ? )  = 2/~? z~ - Xl_~ V/~7 , 1 =  1,2 . . . . .  m,  m =  1 , 2 , . . . , n .  (11) 

Moreover  the funct ions tt,k-* = / i ,k-,( /) ,  k~',k 2 , , . . , k  m : 1 , 2 , . . . ,  l = 
m 

1 , 2 , . . . , m ,  m = 1 , 2 , . . . , n ,  for t > Z r ~ ( k ' ~ ) ,  are defined by the  follow- 
l = l  

ing equal i t ies- inequal i t ies  sb'st.em: 

tt,g__.~ > rt( / , '~") , 1 = 1 , 2 , . . . ,  ,n ,  m = 1 , 2  . . . .  , n ,  ( 1 2 )  

c ,  ~ , ~ ( k , )  i I " ~ - "  1 (xa) 

t l ,k_" -b t'_,,k~ -{- - - - q- t , . , ~ . ,  = t .  ( 1 4 )  

T h e  funct ions  tt,k~(t), k~",~ 2 , k,, = 1 2, l = 1,2,  . , m ,  m : 1, 

2 , . . . ,  n for t < E rt(k~"), can be defined as a .rbi trary cons t an t s  since they  
/ = 1  

are mul t ip l ied  by zero in (6). Final ly in fo rmulas  (6), (9) and in the  fol lowing 

when  in a p roduc t  such as H "  the lower index is g rea te r  t h a n  the  uppe r  

one the  p roduc t  mus t  be unders tood equa.l to one. F o r m u l a  (6) m u s t  be 
in te rpre ted  in d is t r ibut ion  sense and has been o b t a i n e d  in M a p o n i  et  a.1. 
using the  spectra l  theory  of self-adjoint  ope ra to r s  on Hi lbe r t  spaces  and  some  
explici t  fo rmulas  for the spectral  measure  assoc ia ted  to the  r ight  hand  side 
of  (2) wi th  the b o u n d a r y  condit ion (3). hwerse  p r o b l e m s  ana logous  to  the  
one considered here for the one d imens ional  wave and diffusion equa t ions  
have been considered in Bar toloni  et al. and G i o r d a n a  et  al.. T h e  case of  two 
dimensiona.1 diffusion equat ions  has been considered in Mochi  et  al.. 

In section 2 we analyse  the s t ruc ture  of  the signal  u ,  (0, 0, t) given by (6) 
and  we exploi t  this s t ruc ture  to develop an a l g o r i t h m  to solve P r o b l e m  1.2. 
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In section 3 we repor t  some  numer ica l  exper ience  ob ta ined  with syn the t i c  
data, using the a lgor i thm of sect ion 2. 

2 An algori thm to solve the inverse problem 

Let  us analyse  the s t ruc ture  of  u , (0 ,  0, t) given by  (6). 
We note  tha t  for n = 0 we have the  well known solut ion of  the  two- 

d imens iona l  wave equat ion  in an h o m o g e n e o u s  ha l f  p lane.  In order  to fix the  
ideas we take n = 1, we can rewri te  (6) as follows: 

 ,(o,o,O=So(O+Ro(O+ t > o ,  (15) 
t,-~----1 

where: 

S 0 ( l ) -  1 6(t) _ 0  t > 0 ,  (16) 
7rc 1 ~ 

Ro( t ) -  1 H(t) 1 1 
rrCl t-" -- r r c l t  2 ' ! > 0 '  (17) 

_ _  6(t:r~(k~)_____)) ( cltl.~' - ¢c2[c2t~,~' + (cl -c2)r~(k~)]) kl 

t > 0 ,  kl = 1,2 . . . .  , (18) 

2 
s.,(0= 

7re  1 

- -  iWC 1 

[ c )] 
t > 0, k] = 1 , 2 , . . . ,  (19) 

where Q(k~)  91.1 xl  ~-- ~ ' °1  , and t l ,k , ( l  ) = t f o r t  > q ( k ~ ) .  x / ~  - - 

In (15) we have used fo rmulas  such as: 

O H ( t - a )  _ 5 ( t - a )  0 I ~ + H ( t - a ) g i ~ ,  a>0, t>0. (20) 
Ot v~t - a I 

We note  t h a t  the left hand  side of  (20) is a l eg i t imate  d i s t r ibu t ion  while the 
two a d d e n d a  on the right hand  side are only  fo rmal  expressions.  

T h e  signal ul (0, 0, t) co r responding  to c E ,91 is s ingular  for t = 0 and for 
• X l  t = k~T1 where T1 = 2 ~ ,  and k~ = 1 , 2 , . . . .  We note  t ha t  T1 = 2 x l  is 

v~T 
the  first t ravel  t ime  of our  m e d i u m ,  t h a t  is the t ime  necessary to the  init ial  
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pulse travelling at speed v / ~  to reach the discontinuity of tile med ium located 
a t  x = z l  and to come back to the origin. When the pulse, leaving the origin 
at  t = 0, reaches the discontinuity at  z = z l  it is split ted in two waves: 
the first one is transmited through the discontinuity of  the med ium in the 
second layer and the second one is reflected by the discontinuity. This  second 
wave comes back toward the origin and when arrives at the origin at t ime 
t = TI we have a singularity in ua(O,O,t).  The reflected wave tha t  comes 
back toward the origin is reflected by the boundary  x = 0 and goes back 
toward the discontinuity located at x = z'l, where the phenomenon described 
above takes place again and so on. T h a t  is the t e rm S~_, (t) + Rk, (t) at  

t = kiT1 , k~ = 1,2, . . .  can be interpreted as the kLecho  coming f rom the 
first discontinuity ill the medium, see Figure 1. 

u~(O,O,t) 

05 

-05 

. . . .  j . . . . .  s U I  . . .,x A . .  . 

• ° 

V 

Fig. 1. Finite difference approximation of t,j (0, 0, t) when c, = 9, c2 = 25, Xl = 1 

Morever ul(0,0,  t) for t ¢ klT1,  kl = 0, 1 , . . . ,  is a smooth  function of t, 
and for kl = 1, 2 , . . .  the following relations hold: 

1 
- - =  lira (-~t2Ro(t)) (21) 
C 1 t-+O+ 

" k; l ira 
v ~ Z Y v ~ . ]  = ~-.,,~kl~+ 2 ~, R~,(t). (22) \ 
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From (21), (22) a.nd the fact that xa = v ~ T 1  it is easy to reconstruct the 
2 

velocity profile c E gt, that  is xl, cl, e2. Finally we note that  Ro(t)  = 0 ( ~ ) ,  
R k _ , ( t ) ' - O ( 3 ) ,  as t -+  +oo for kl = 1 , 2 , . . . .  

The analysis of un(O,O,t), for n > 1, needs a preliminary investigation 
~ m  of the solutions tl,k_,,(t), for t > r~(k~ '~) + . . .  + rm(k , , ) ,  l = 1 , 2 , . . . , m ,  

m = 1 , 2 , . . . ,  n of the equalities-inequalities system (12), (13), (14). 

L e m m a  2.1 Let m be an integer, with 1 < m < n, given a mult i  index k m = 
(kT', k~', k,,), let rx(kT'), ~ (k~  ) , . . . ,  r,,~(km) > 0 be defined by (11), then 

771 

for  every t > 7"j(kj ) there exists a unique solution tt,~_,. = tt,k_.~(t), l = 
j=l 

1 , 2 , . . . ,  m, of the system (12), (13), (1.~). Moreover, let t~,k,.(t) = dt (t), 

l - 1 , 2  . . . .  ,m,  then we have: 

c ~2(k?) 
' t ,ao,  (t) "" 

t~,~..(t) = t > ~ -"' = (23) _ . ,  r j(kj  ) l 1 2 ,  . , m .  

P r o o f  Introducing the parameter s >_ 0 equations (13) can be rewrit ten as 

1 ( t~'k" 1) l = 1 , 2 ,  m. (24) S ~ - -  q " ~ ' / l l  ' " " " 

ct rl'(kl ) 

We note that  when s = 0 we have tt,k" = rt(k~"), l = 1,2 . . . .  , m  and 
m ~7~ 

t = E t t , k ~  = E r t ( k ; ~ )  and when s > 0 we have tt,k_., > rt(k'~) for 
l = l  /=1 

l = 1,2 . . . .  ,m, and t > E rt(k;'~). Let t t , ~ ( s ) ,  s _> 0, 1 = 1 , 2 , . . . , m ,  be the 
/ = I  

non negative fimctions defined implicitely by (24). 
Let: 

7 n  

T(s) = t,,~_..(~)+ t . % , : . , ( s ) + . . - +  t,,,.,_.°, ( , )  = ~ n ( k ; " ) . / ~ - - 4 - 1 ,  , > O, 
I=1 

(25) 
then the equation: 

t = T(s) ,  (26) 

defines implicitely a unique function s = s(t) for every t _> E r j  (k~),  in fact 
j = l  

,n dT  
we have: T(0) = Erj(]~.7 ~) < t, l i m , ~  T(s)  = +c~ and ~ > 0 for s _> 0. 

j = l  
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Thus with abuse of notation we denote with tt,U,(t) = tt,k-,(s(t)), l = 
1,2 . . . .  , m the unique solutions of (12), (13), (14). Moreover we have: 

, n(~,?) ds 
t,,~. (t) = 2~/c~,(t) + a dt  > o ,  t = 1 , 2 , . . . ,  m .  ( 2 7 )  

Finally, from (13), (14) we obtain: 

?'tl m 

= 1 for t > E " , ( k T ) '  (28) 
j = l  j = l  

1 ta . i . . ( t ) t ' l , . , ( t )  _ 1 t . , k - ( t ) t ' k . , ( t )  1 t , , , .k , . ( t ) t 'k . , ( t )  ( 2 9 )  
- -  -~ "'" = ' ' "  = - -  , ~ ( k ~ )  

From (27), (28), (29) we have (23). Tiffs concludes the proof. 
When n > 1 we can rewrite u , (0 ,0 ,  t) as follows: 

, , , ( 0 , 0 , 0 = s 0 ( 0 + n 0 ( 0 +  . . .  . ~ , ( ~ ) + R ~ , ( t )  , t > 0 ,  
1----1 k~=l /¢~=1 k~=l 

(3o) 
where S0, R,0 are given by formula.s (16), (17), kt = (k~, k t . . . .  , k~) and Sk,, 

kl, k~ . . . . .  L:~ = 1,2 . . . . .  l = 1 , 2 , . . . ,  n, can be easily identified from R~,, f o r  .t .t 

(6~j, in analogy with the previously introduced .9~, (t), Rk, (t). 
We note that  the st.ructure of the signal un(0, 0, t) is considerably more 

complicated than the structure of ul (0, O, t). This is due to the fact that  every 
discontinuity between two layers splits a wave propagating in the medium 
that  meets the discontinuity in two different parts: the t rasmit ted wave 
and the reflected wave. Thus u, , (0,0, / )  is the result of the action on the 
ilfitial pulse of the n discontinuitSes in the medium, that  is given l and 
_k' = (k~, . . . ,k~) ,  the t.erms ,~, ,  R E in (30) represent the contribution 
to u,(O,0, t) coming from the medium made of the first l + t layers of 
en(x) from the part  of the initial pulse tha t  has traveled L-~ times back 
and forth in the i-th layer of the medium, i = 1 , 2 , . . . , 1 .  We note tha t  

t 

E ri(k~), I = 1,2 . . . . .  n is the travel time for such a path. The signal 
i= t  
un(0, 0, t) is singular for t = rl (k~) + - . - +  r, (k~) and the term S~, (t) + Rk_, (t), 

t > ra(k~) + . . .  + rt(t,~) is named the #-echo, see Figure 2. 
From Lemma 2.1 we have: 

I--1 

H ( , z : +  
271" s=l  

li,,, 
= t--*(r~(k~)+-.,+,',(~'/))+ 4 / t-1 

s ~ 2  
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u~( O,O,O 

0.5 

-0.5 
..: .. 

} !  A . . . . . . .  ,, 
~ , -  ~ - ,  - x t  ' 

Fig.  2. Finite difference approximation of u2 (0, 0, t) when cx = 4, c2 = 9, c3 = 16, 
Xl = 2, x2 ~ 3 

~,,.(kl) ~L_,- E ,~(kl) 
\ ~ = 1  ~ = 1  .~=1 n~, (t), 

3 m 

c.,r;(k.,) 
S = I  

k ~ , k ~ , . . . , k  I = 1 , 2 , . . . ,  l =  1 . . . .  , n ,  (31) 

where: 

1 (32) 7k'  = - -  , k~ = 1 , 2 , . . . ,  
- c 1 

j( t-a,O j q - 2 . 0  j(1,0 

7k_' = E E " '"  E ( - - 1 ) ' h + k " +  .+ j ,_ ,+kl_ , .  
j/_t =1 j l -2=l  jx=l 

1-1 (//¢,+1 + k,'l __3.,)(]¢'s+1__ 1.~ ( cX/-d~.~+l - }- '  -k'-'~" • ~ ' 3  X / ¢ , +  1 "1 - , -3. 
" H  .l 
.,=1 k,+a \ j . , - 1  ] \ ~ + ~ /  

k ~ , k { , , . . . , k  i = 1,2 . . . .  , l = 1 , . . . , n ,  (33) 

= h i , k 2 , . . .  ., and finally R~,,(t) O ( 3 ) ,  when t -+ +'--'o, for "' °̀  , k ~ - - - 1 , 2 , . .  l =  

1 , 2 , . . . , n .  
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The following algorithm t.o solve Problem 1.2 is based on the previous 
analysis of the structure of u,~(0,0,t), t > 0. The purpose of this algorithm 
is to find the fimction c with the smallest number of jumps that  fits the da ta  
F(t) ,  t > 0 to a given accuracy. 

A l g o r i t h m  2.2 Given F(t)  for 0 < t < TF, given three real positive param- 
eters ZIE, Tol~, FT, perform the following steps: 

1. Compute 51 (see formula (21)) as follows: 

1 
~1 = - lira (34) 

t-+o+ 7rt2F(t) " 

2. Set: n = O, xo = O, 5(x) = 51, x > ~o, To = AE.  
3. lnspect the signal F(t) ,  for To < t < TF, to find TE, the first echo in the 

interval (To, TF) that doe's not come from multiple reflections due to the 
structure e(x) already reconstructed. We recog,~ize TE as an echo if the 
following condition holds: 

IF(q)[  > IF(t2)] > FT for everyt l , t , ,  such that TE < tl < t,. < TE+ An.  
(35) 

4. If  F( t ) ,  for To <_ t < TF, has no echoes of the type described in step 3 
then 90 to step 7. 

5. Let TE be the echo fowTd in step 3, increase the counter n by 1 and define 
(see fo,.,,,,,l.s (31), (ae), (:~:~)): 

T T E -  "2 xJ 
j =1 V / ~  

, )  

Cn + 1 --" C'n 7 ' 

f 5j, a~j-a _< z < .~'/, j - -  1 , 2 , . . . , n ,  
5(x) I 

w h e r e  

L E  = lira 
t--~(~x (1 )+ . . .+~ .  (1))+ 4 "  

, 7 1 . =  1 ,  

(36) 
, n > 1,  

(37) 

(38) 

277 1 :1  

1---2 

- (1) 
l = l  F(t) ,  (39/ 

52" 
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f i ( 1 )  = 2 kt - k t - 1  v ~  , I = 1 , 2  . . . . .  n,  ( 4 0 )  

1 
~_p = - -  , (41) 

Cl 

: 1, (42)  

where t~,i" (t), I = 1,2 . . . . .  ,, a,'e the solutions of  (1~), (13), (14) when 
k~ = 1, l = 1 , 2  . . . . .  n, that is l "  = (1,1 . . . .  ,1) E I R  '~. 

6. Set To = TE + TolE and 90 to .step 3. 
7. Stop. 

We note that  Algorithm 2.2 reconstructs the function c calculat ing the 
pairs cj, z j -1 ,  j = 1 , 2 , . . . , n  + 1, one at the time. This  is useful to deal 
with ill conditioned character of Problem 1.2. The reconstruction is done 
analysing the echoes in the signal F(t) .  The parameters  Am, TolE and FT 
play impor tan t  rules in Algorithm 2.2. In particular Am and FT control the 
recognition of the echoes in the signal F(t)  and TolE is the tolerance in 
the recognition of echoes in the signal F(t)  that  comes from new s t ructure  
and echoes that  comes fi'om the coefficient fimction ~ reconstructed fi'om 
the signal F(t) ,  t <_ To. Finally in Algorithm 2.2 we have not considered 
the degenerate case, where the first, echo in F(t)  related to new structure  
in e is superimposed with an echo in F(t)  due to mult iple reflections on the 
s t ructure  already reconstructed. In such cases some ext ra  care must  be used 
in the reconstruction. 

3 T h e  n u l n e r i c a l  e x p e r i e n c e  

In Table 1 we present some numerical results obtained with an i lnplementa-  
tion of Algorithna 2.2 in a FORTRAN 77 code. 

We have colnputed F( t )  solving Problem 1.1 by a finite difference scheme 
on a rectangle R with side lengths L~.,2L u, that  is R = (0, L=) x ( - L u , L u ) .  
The finite difference scheme uses h.. as spatial mesh size and ht as t empora l  
mesh size. We have considered a simple form of absorbing boundary  con- 
ditions, see Reynolds, to simulate the halfplane D. Finally, the Dirac delta. 
appear ing in condition (4) is approxilnated by the following function: 

~(x, y; h,) = - - e  :',. , (z, y) E R. (43) 
2rrh, 

The  da ta  F(t) ,  0 < t < TF are obtained as follows: given a positive integer 
JR let :ire = Jvh t  , tj = jh t ,  j = 1,2 . . . .  , Jr ,  F( t j )  = Fj, j = 1 , 2 , . . . ,  JF 
where Fj is the finite difference approximation of u , (0 ,  0, tj),  j = 1 , 2 , . . . ,  JF.  
In Example  3.1 we have chosen L~. = 5, L u = 2.5, h~ ~ 1.11 - 10 -2 , ht ~, 
8.73 • 10 -4 and values of the same order of magni tude have been chosen for 
these parameters  in the remailaing exalnples. 
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T a b l e  1. Numer ica l  exper i ence  

Originals  R e c o n s t r u c t i o n s  
Example  3.1 ca = 81 fi] = 81.19 

c2 = 16 ~ = 16.27 
xl  = 3 .5  i h  = 3.48 

E x a m p l e  3.2 c] = 9 cl = 10.25 
c~ = 25 ~ = 19.9 
xl  = 1 i h  = 0 . 9 8  

E xam pl e  3.3 cx = 4 cl = 3.84 
c2 = 9  ~ = 9 . 2 2  

ca = 16 c3 = 18.32 
xl  = 2 i'x = 1.92 
x2 = 3  x2  = 2 . 9 4  

E xam pl e  3.4 cl = 6 ~] = 6.12 
c2 = 3  c2 = 2 - 2 5  
c3 = 8  c3 = 6 . 6 7  
xl = 2  x l  = 1.98 
x2 = 3 2`2 = 2.84 

Example  3.5 c1 = ,l Cl = 3.99 
c 2 = 9  c 2 = 9 . 5 7  
c3 = 4 <?3 = 3.52 

c4 = 9  ~4 = 9 . 9 2  

xl  = 2  ih  = 1.95 
z2 = 3  22 = 2 - 9 8  
xz. = 4 k3 = 3.91 

Exalnple  3.6 cl = 4 6] = 4.1 
c~ = 8  62 = 7 . 8 2  

c3 = 24 c3 = 23.95 
c4 = 30 54 = 38.66 
xl  = 2  21 = 1 . 9 7  
x2 = 3  x2 = 2 - 9 6  
x3 = 4 2"3 = 3.99 

T i l e  r e s u l t s  r e p o r t e d  in T a b l e  1 a r e  o b t a i n e d  u s i n g  A l g o r i t h m  2 .2  o n  t h e  

s y n t h e t i c  d a t a  d e s c r i b e d  a b o v e .  W e  n o t e  t h a t  t h e  c o m p u t a t i o n  o f  t h e  l i m i t s  

(34), (39) in  A l g o r i t h l n  2.2 m u s t  b e  h a n d l e d  w i t h  c a r e  s ince  o n l y  a s i g n a l  

F(t) of  low q u a l i t y  c a n  b e  e x p e c t e d  n e a r  t = T E ,  a t r a v e l  t i m e .  

T h e  r e s u l t s  g i v e n  in  T a b l e  1 a re  o b t a i n e d  w i t h  t h e  f o l l o w i n g  v a l u e s  o f  t h e  

p a r a m e t e r s  o f  A l g o r i t h m  2.2: TolE = 0.2,  A E  = 0 .05 ,  F T  = 0 .005 .  

T h e s e  r e s u l t s  a re  r e l a t i v e  to  one ,  t w o  a n d  t h r e e  j u m p s  f u n c t i o n s .  T a b l e  1 

s h o w s  a c c u r a t e  r e c o n s t r u c t i o n s .  S i m i l a r  r e s u l t s  c a n  b e  o b t a i n e d  w i t h  s l i g h t  

m o r e  c o m p l i c a . t e d  s t r u c t u r e s ,  but. r e c o n s t r u c t i o n s  o f  coe f f i c i en t  f l m c t i o n  c w i t h  

m a n y  m o r e  j u m p s  n e e d s  m o r e  s o p h i s t i c a t e d  a l g o r i t h m s  t h a n  A l g o r i t h m  2.2.  
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In fact the echoes coming fi'om complicated structures are misunderstood by 
the simple recognition procedure of Algorithm 2.2. 
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A b s t r a c t .  The starting point of this work is the inversion of vertical seismic profil- 
ing (VSP) data. The usual processing of VSP data by inverse techniques is restricted 
to 1D propagation model. In this case, the parameters to identify are the acoustic 
impedance as function of travel time and the seismic source so that we have as 
unknowns two functions of one variable and as data a function of two variables, 
the time and the depth positions of geophones. The problem is thus largely overde- 
termined and an elementary mathematical analysis can be made. The source is 
modelled as a boundary condition at the top of the geophones zone. So this bound- 
ary condition replaces the true source function and the medium parameters above 
the geophones zone. The question asked by V. Richard from IFP was the "manage- 
ment" of this unknown source when 3D propagation effects are taken into account 
in horizontally layered medium where the propagation equations are parametrized 
by the k parameter of the Hankel transform. Now we think that the answer is 
that it is impossible to work round the fact that there are at least two unknown 
functions, the source and the medium parameters above the geophones zone. Dur- 
ing this study, we have searched for some non local boundary conditions and this 
was the opportunity to obtain some results on exact transparent conditions for 3D 
propagation in 1D media (preliminary communication was made by Petit and Cuer 
(1994)) and on the discretization of such conditions in the acoustic case (prelimi- 
nary communication was made by Cuer and Petit (1995)). This is the mathematical 
substance of this work in which the Poisson summation formula is used to prove 
the stability of a discrete non local boundary condition. 

1 I n t r o d u c t i o n  

Dur ing  recent years, there has been increasing interest  in ful l -waveform model -  
based inversion a lgor i thms for multioffset  seismic data .  W i t h o u t  pretence to 
completeness,  we refer to the papers  of Ju rado  et al. (1995a,b) for some 
bib l iographica l  references. The  first of these articles conta ins  a numer ica l  
m e t h o d  for solving the direct e l a s todynamic  p rob lem for 3D p ropaga t ion  in 
1D media .  This  me thod  is based on the Candel  a lgor i thm (Candel  1981) for 
the numer ica l  c o m p u t a t i o n  of Hankel  t rans forms  and on a finite difference 
scheme on a staggered grid in depth  and  t ime  as used by Vir ieux (1986) 
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and Madariaga (1976). The choice of these algorithms results only from sim- 
plicity considerations and other more common techniques such as reflectivity 
or characteristics methods or more sophisticated schemes of high orders or 
spectral methods should be included in an ideal computing library~ The sec- 
ond article contains numerical experiments on the inverse problem based on 
the least squares approach, the gradient of the misfit functional being com- 
puted by the adjoint state technique (see Lions 1968, Chavent 1974). When 
the misfit functional is displayed as function of the P-wave velocity vp or as 
function of the bot tom depth of a particular layer in a layer-cake model, we 
observe local minima which can prevent descent methods to work. When the 
earth model is parametrized with the travel time r (z)  = fo  ~ to mea- vp(~) 
sure the depth (here z is the vertical coordinate), the behaviour of the misfit 
functional is improved. More precisely, as function of the velocity expressed 
in travel-time depth, the misfit functional tends to a quasi-quadratic form. 
As function of the depth interface the problem is the same but  the picking 
is more easy since then the depths of interfaces are directly accessible on the 
seismograms. Thus an inversion procedure with manual picking of interfaces 
is possible and an automatic one probably requires a combination of some 
kind of layer stripping as the ones proposed by Yagle and Levy (1985) or 
Carazzone (1986) with the usual least-squares formulation. In the hope to 
perform processing of field data that  are of immediate interest in practice, 
we have then studied an inverse problem for borehole data. 

The VSP technique is a borehole seismic survey technique in which the 
seismic source is near the surface of the earth and the geophones are located 
at various depths in the well. This technique gives more accurate depth call- 
bration than that  is obtained by using velocities deduced from surface seismic 
data. Besides the signal bandwidth is closer to the ordinary seismic data  than 
do the sonic logs so that  the comparison with seismic surface data  is more 
easy. With such data, the wave field along the well is measured and the dis- 
tinction between downgoing and upgoing waves and the estimation of seismic 
velocities are not very difficult. The basic steps of a conventional processing 
are traces editing, separation of the downgoing waves from the upgoing waves 
(with, for example, an f-k dip filter), static correction, deconvolution and fil- 
tering and stacking. This gives a "corridor stacking" that  is an alternative 
to zero offset "synthetic seismogram" derived from the sonic log: it can be 
compared with the CMP stack of surface seismic data  at the well location 
(see Yilmaz (1987) and Marl and Coppens (1989) and the cited references 
for more information). 

Inverse techniques have been proposed by Mac6 and Lailly (1986) and 
used for example by Lefebvre (1985) to obtain the acoustic impedance (or 
reflection coefficients) from the VSP data (the conventional processing does 
not produce this information). In these works the propagation model is 1D 
and formulated in the travel-time variable r (z )  = f ~ , .  d-L (c(~) = vp(~) c(~) 
for longitudinal waves). The problem solved by least squares minimization, 
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the gradient being computed by the adjoint-state technique, is the following: 
determine the acoustic impedance a ( r )  (=  p(z(r))c(z(r)) where p is the 
density and c the sound velocity) as function of the travel t ime r and the 
seismic pulse g(t) from the data  Otu(r, t) for 0 < r < r m ~ ,  0 < t < t "~a~, the 
vertical displacement u being solution of the 1D wave equation: 

cr('l')Ott u( z , t) - Or ( O'( 7")Or U( 7", t)) = 0 (1) 

for 0 < r < T m a x  , 0 < t < t m a x  , 

~ (O)OqrU(O,  t) = g(t) (2) 

O t l t ( T  m a x  , t )  "3 t- O r U ( T  m a x  , t )  -~ 0 (3) 

for 0 < t  < t  m a ~ ,  

u(r, O) = Otu(r, 0) = 0 (4) 

for 0 < r < r m~X. The  second boundary  condition (3) for r = r m ~  (which is 
an exact t ransparent  condition) is included here only for convenience: nothing 
essential is lost if r " ~  = co (without boundary  condition at oo). In this 
inverse problem, if a couple (c D g) is a solution, then ((~er, ag)  is also a solution 
for any constant a .  In practice this is not a drawback because c~(0) can always 
be fixed. Mac4 and Lailly (1986) have reported an excellent reliability of the 
inversion even when Otu(r,t) is given only for 0 < r < r ~  ~* < r r ~ .  N o t e  
t h a t  t h e  u n k n o w n  f u n c t i o n  g(t) is n o t  n e c e s s a r i l y  t h e  t r u e  s o u r c e  
s ince  t h e  s o u r c e  c a n  b e  l o c a t e d  in  t h e  r e g i o n  r < <  O: g(t) is t h e  
t r a c e  o f  ~O~u a t  t h e  f i r s t  d e p t h  o f  i n v e s t i g a t i o n .  This is an advantage 
of the technique: the zone to invert can be chosen. Note also tha t  on the 
elementary mathemat ica l  side, these results are "natural" since the velocity 
v(z, t) = &u(z,  t) in the original depth variable z being solution of: 

p ( z ) o . v ( z ,  t)  - ~ ( p ( z ) c ( z ) ~ & ~ ( z ,  t)) = 0 (5) 

writing: 
a~ (p(~)4z) ~ o~ v(z, O) = 

az (p(z)c(z))c(z),9~,,(z, t) + p(z)c(z)< (c(z)< v(z, O) (6) 

we obtain,  if c(z) is known, the formula giving the acoutic impedance (if 
p(zm~')c(z m~') is known): 

p ( z ) c ( z )  = 

p(zrnin)c(zrain)exp(f z (Ottv(~' t)-c(~)20¢(v(~' t))  O(c(~))d~). (7) 
j~r.,. C(0%V(~, t) C(¢) 

The deduction of c(z) from the data,  a work made by the conventional pro- 
cessing, is also an elementary mathemat ica l  result since writing tha t  the t ime 
derivative of the expression under the integrM sign in (7) is zero, we obtain: 

c(z) 2 (0 .v )0 , , , v  - ( 0 , , v ) 0 . v  
= (O~v)O~z,V ( o . v ) O . v  (s) 
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The fact that  when Otu(r, t) is given only for 0 < v < v~ a= < 7- m~ ,  cr(T) can 
be also identified follows from the ordinary results on the 1D inverse problem 
(see for example Bamberger et al. (1979) and Bube and Surridge (1983)). 

The starting point of this study is thus the extension of this inversion tech- 
nique when 3D propagation effects are taken into account, the characteristic 
of the media being only z dependent. This contribution is now divided into 
three sections. In the next section 2, some problems found in formulating the 
inversion of VSP data with 3D propagation effects are presented. The section 
3 is devoted to a related question of exact transparent boundary conditions. 
The section 4 is devoted to the stability of the discretization of this boundary  
condition in the acoustic case. 

2 F o r m u l a t i n g  t h e  P r o b l e m  o f  I n v e r s i o n  o f  V S P  D a t a  

w i t h  3 D  P r o p a g a t i o n  E f f e c t s  i n  L a y e r e d  M e d i a  

Let us consider the axisymmetric acoustic case in which the equations of 
motion in cylindrical coordinates (r, 0, z) are: 

p(z)O vr(r, z, t) = a P ( r ,  z, t) (9) 

p(z)Otv z (r, z, t) = Ozp(r, z, t) (10) 

1 
p(z)c(z)  2 0tp(r, z, t) = 

v~(r, z, t) 6(r)6(z - z ,)g(t)  
cg~v~(r 'z ' t )+ r + a z v Z ( r ' z ' t ) +  27rrp(z)c(z) ~ i l l )  

with null initial condition and the boundary conditions ((12) is a "natural" 
boundary condition, (13) results from the axisymmetry and (14) is an ab- 
sorbing condition introduced for convenience): 

p(r, z = 0, t) = 0 (12) 

v ~ ( r = O , z , t ) = O r v Z ( r = O , z , t ) = O ~ p ( r = O , z , t ) = O  (13) 

(p + pcv ~ )(r, z ma=, t) = 0 . (14) 

Here p(z) and c(z) are respectively the density and the sound velocity, v ~ 
and v z are respectively the radial and vertical components of the velocity, 
p is the pressure with a change of sign to keep the elasticity convention 
(opposed to the fluid mechanic one) and g(t) is the source function (g(t) = 0 
for t < 0). Clearly the terms O~v~(r, z , t ) +  v~(r'z't) prevent the analysis of 
the 1D case. However results of Romanov presented in a book of Lavrent 'ev, 
Reznitskaya and Yakhno (1986) (pages 52 - 58) show that  if p is constant 
and c is known for 0 < z < z a (where z, < zg), then when the source function 
g(t) is known, the measurement of v ~ ( 0, zg, t) for t > 0 suffices to obtain c(z) 
for z > zg. The proof exploits the support  properties of Green functions of 
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general acoustic media, well known properties of Volterra integral equation 
and some non trivial geometrical properties of wave fronts (in the geometrical  
optic sense). We do not have made a more detailled analysis of this point: 
note only that  when z > >  zs the plane wave approximat ion works so tha t  

O S ( r , z , t )  + ~(~,~,0 r --~>>z~ 0 and the 1D analysis is probably  a good 
approximation.  

In an a t t empt  to find a boundary condition at z = z rnin with z~ < z "~in 
(the measurement  being made at depths z >_ zmin), we have considered the 
second order wave propagat ion equation satisfied by the pressure p (with 
x, = (o, o, z~)): 

p(z)c(z)  ~ Ottp(x, t) - div( g r a d  p(x,  t)) = 6(Xp(z)c(z) 2 -  x , )g ' ( t )  (15) 

and the equation satisfied by the Green's  function G(x,  t; y) corresponding 
to a density function fi(x) and a sound velocity 5(x) (with the usual initial 
and boundary  conditions): 

1 1 
f i ( x ) ~ ( x ) 2 & t G ( x , t ; y ) -  d i v ( ~ - ~  g r a d  a ( x , t ;  y))  = 5(x - y)5( t)  (16) 

all the spacial derivative being made with respect to x = (x, y, z) -- (r, O, z). 
Using a convolution in t and the Green formula in /2 = {x = (x, y, z) : 0 < 
z < zmin},  it follows from (15) and (16) that  if fi = p and 5 = c in /2, then 
for y 6 f2: 

P(Y,O = f~ V ( x s , t  - r;  y )g ' (7 )dv  
p(~)c(z~)~ 

( (G(x , t - r ;y)  Op(x'r) , )  ° a ( x ' t  - "; Y))e~(x))e~ (17) 
n On p(x, On 

where o = n T g r a d  is the derivative along the unit normal  exterior to 
On 

(9/2 and &r(y) is the area element on 8Y2. T a k i n g  t h e  l i m i t  y --+ 0£2 we  
o b t a i n  a p o s s i b l e  w a y  t o  f ind  a b o u n d a r y  e o n d i t i o n  a t  z = z "~in. 
But this formula  depends on the unknown function G and even in the simple 
case where p and c are constant i n / 2  so that  we can choose as G the Green 
function of the homogeneous half space z > 0: 

~ (~ (~ -  ]Lx- -y  ]1/e) ~(t-  II '~ - y' II/~) 
G ( x ,  t ;  y )  = 47r tl x - y I1 - ][-~-- yT][ ) (18)  

(where yl is obtained from y by orthogonal s ym met ry  across the plane z = 0) 
one finds the formula,  F,~i,~ being the plane z = z'~m: 

p(y,t)  = l ( g ' ( t - - _  ] ]xs-__y_ II/c) g'(t- II ~, - y '  II/c)) 
2~c~' II x, - y II - ]1 x T : Z ~ T I  

+~1 ]Fm,o II x -1 Y i[(Ozp(X,t_llu_Yll/~))u=.d~(x) 
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1 is" 1 O:p(x, t -  II u - y' II /~) 
2~ ( l l x - Y ' l l  r a i n  

+ 1--O:(ln(ll x - y '  I I ) )O,p(x ,  t -  II ,1 - y '  I I / ~ )  
C 

1 
-° : ( l l  x - y '  II )p(x' t-  II ~ -Y '  II/c)),,=xd<~(x) 09) 

which after the tIankel transform is (we denote by ~ (k)  = f o  a .  (kr)9~(r)rdr  
the direct Hankel transform of order u of a function ~ where J~ is the Bessel 
function of order u): 

po(k, ~"",  t) = 

t . /  Z rain  - -  Zs  
1 ( Y ( t  z 'm'~ - z~) [ d o ( k c v  s~ - ( -- )2)g'( t  - s )ds  

27rc c - y ~ " ' " - . ,  c 

f t  7 ( zmi~ - Y ( t  zm~"--+c zs) ~,i+=. So(kc ~ - c+ z.)~)g,(t  - s)d~) 

L 
t 

+pcO~ (k, zm'",t) - kpc ~ zl(kc~))0;(k, z m~", t - ~)ds 

- Y  (t  zrnin "}- Zs ^z rnin 2zrnin 
) (pcvo(k , z  , t  - - )  

C C 

j; 7 V . ^ r r ~ i r ~  + Jo(kc ~2 _ ( 1211( 2zm'" o-". cs O~_0.k,~( z , t - s )  

2z rain 
+ ~ b o ( k ,  z r~'", t - s))ds) (20) 

where Y is the Heaviside function. The formula (20) can be deduced from 
(19) by the technique of the next section. From the complexity of this partial  
result, we conclude that  when 3D propagation effects are taken into account, 
there is no simple way to introduce a boundary condition allowing a choice 
of the zone to invert. Practically it is necessary to diseretize all the borehole, 
partially with macro layers if necessary (thus carrying out some kind of ho- 
mogeneization if necessary). Besides the results of Romanov is probably a 
convenient starting point for a theoretical analysis of the inverse problem of 
VSP data. 
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3 E x a c t  T r a n s p a r e n t  B o u n d a r y  C o n d i t i o n s  f o r  t h e  

A x i s y m m e t r i c  P r o b l e m  a f t e r  H a n k e l  T r a n s f o r m  

The computat ion made for (17) can be modified to write the exact trans- 
parent condition for z = z ma~ if p and c are constant for z > z "~a=. More 
precisely if one chooses G ( x , t ; y )  = 4-t~ ~(t- =-YP[/~) the Green function in IIx-yll ' 
IR 3 in the homogeneous case, and /2  = {x = (x, y, z) : z > z'~a=}, then using 
a convolution in t and the Green formula in ~2, it follows from (15) and (16) 
that for y E £2: 

j f0 t f0  p(_~) 0p(x, r)  . O G ( x , t - v ; y ) ) d ~ ( x ) ) d T  p(y , t )  = ( ( G ( x , t - r ;  y) On p(x,  r)  ~nn 

1 fo, (t I i ov = ~ x -  y [l~nn(X't- [[ u -  y l[/c) 

Op (x, t - t - l ~ ( l n  [[ x - - y  [ ,)~- --II u - - Y  [I/c) 

0 1 
On()].. x - y [ [ )p(x , t - [ ]  u - y  ]]/c))u=xdc~(x) (21) 

which is the Kirchhoff formula (which can also be obtained from a particular 
property of the Laplacian in IR3: see Smirnov (1964)). 

Taking the limit y --+ 0~2, the exact transparent boundary condition is 
obtained. In our case 0 ~  is the plane z - z ma~: and the result is that  for 
y = (x,y ,  zmaX): 

1 ~ 1 Op 
p ( y , t ) = ~ - ~  ( l l x - y l l O n ( Y , t - l l u - y [ ] / c ) ) ~ = ~ d ~ ( x )  • (22) 

Computing the integral in (22) in polar coordinates centered at y and using 
the axisymmetry of the problem and the causal nature of p, we first obtain: 

p(r, zmaX,t)  : 

1 f c t  f2r 1 
21r J0 rdr]o  (-~O~p((r2+v2+2rrcos~o)l /2 ,zma=,t-v/c))d~o (23) 

for r > 0, t > 0. Then using the inverse Hankel transform: 

0~p((r 2 + r 2 + 2r~ cos ~)1/~, zmO=, t _ v/e) = 

f0 ~ J0(k(r  2 7- 2 + 2r rcos  ~)l/~)Oz~o(k, z ma~, t - r /c )kdk  (24) + 

and an addition formula of Bessel functions (Watson (1922), p 358-361): 

Jo(k(r 2 ÷ v 2 + 2rv cos ~o)'/2) -- E ( -1)mJm(kr)Jm(kr)e i 'n~ 
mET] 

(25) 
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we find: 

j0 c' po(k ,  Z rnax , t )  : -- OzT~O(k, Z max,  t -- T / C ) J o ( k T ) d T  (26) 

for k _> 0, t _> 0 that  is to say, since Oz{oo(k,z,t) = p(z)O,~(k,z,t) and after 
an integration by parts in v (J'o(x) = -J,(x),  J0(0) = 1 are used and in (27), 
p and c are taken for z = z"a~): 

i~o(k, z m°~, t) + pc~g (k, z "o~, t) 

Jo' - k p c  2 Jl(kc(t  - 8)~;(k, z "o- ,  8)d~ = 0 .  (27) 

This is the exact transparent boundary condition after the tIankel transform 
in the acoustic case adapted to the following equations of propagation written 
as first order hyperbolic systems: 

p(z)Ot~l(k, z, t) = -k~o(k, z, t) (28) 

p(z)O,~(k, z, t) = Oz~o(k, z, t) (29) 

1 5(z  - z , )  (30) 

/~0(k, z = 0, t) = 0 (31) 

po(k,z,O) = ~3~(k,z,0)= ~(k,z,O)= 0 . (32) 

In the isotropic elastodynamic case, the wave operator is replaced by the 
operator u --+ f lOttuj - -  O l ( S l j ) ~ O k u k  -~- ] - t (OjUl  -~ O l U j ) )  and the fundamental  
solution, for p, A,# constant (with the right hand side 5(x)6(t)5~j) is the 
matr ix G with coefficients: 

c~i (x ,  t) = 

1 37i'7j --~ij t(Y(t II x II)_ Y ( t -  ~ ) )  
47rp -H x -ff a 

1 7_i7j_ 5(t II x II 1 "(i~(J - -  5iJ 5(t - -  ~ )  
+4a'P e ~  II x II-'- ~ ) - 4a'P/3-------5 ~ xqi 

(33) 

Similar computations as the previous ones where the Green formula 7i = ilxll- 
is replaced by the Betti formula, allow to obtain exact transparent condition 
in the elastic case. Using polar coordinates as in (23), using (25) and: 

COS 0 ~  7" 2 2Tr  COS ~)1/2)  
s inOJ  Jl(k(r2 + + = 

/ ( - 1 ) ' -  c o s m ~  
E J"+l(kr)J"(kr) ~(_1)"+1  s i n m ~ )  (34) 
mE77 
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_ r + r  cos where c o s 0  = ~ / ~ ; + ~ = + ~ c o ~ ;  s i n 0  = - rsin~ the ob ta ined  exact  
' ~/r~+r2+27"r cos ¢p ' 

t ransparen t  condit ions are: 

~0 t ~rlz (]g, Z rnax , t) -~- p~vr  1 (]g, Z rnax, t) - -  k ~  (J1 (k~(t - s) 

f k c~ ( t - s )  J1 (~) d~)~r[ z (]g, zmax 8 ) d 8 -  ]c.~ £ ~ t  Jo(]g°~( t _ 8))~)~ (k, z max , 8)d8 
+ akin(t-s) -~ ol 

t _ f k a ( t - s )  

~0 t ~ z ( k ,  zrnax, t )  -~- pOl?)~(k, zrnax, t )  - -  ] g ~  ( J l ( k ~ ( t  - -  8) ) - -  

~ ko~(t-s) j l ( ~ ) d  ~ o'gZ( k , z m a x , 8 ) d 8  
~(,-~) ~ ) 

r '  ~ z l ( k ~ ( t  - ~)) 
+P~ ]o (-~ ~-  ~ 

3k)32 , 
+ - - J l ( k ~ ( t  - 8) )  - 2 k Z J l ( k Z ( t  - 8 ) )  

Ol 

-3k2/~2(t - 8) ]~z(,_~) zm°L 8)ds = o ( 3 6 )  

for the longi tudinal  (or P - SV)  waves, and:  

^ 6 z / .  max t) -~- p ~ ) ~  (]% Z max , t) 

fO 
t 

- k Z  J l (kZ( t  - s ) ) ~ z ( k , z ~ ° ~ , 8 ) d 8  = 0 (37) 

for the torsional (or SH)  waves. 

Remark I. This process giving (21) can be generalized: for example,  if the 
original problem is in the half  space z > 0 with the na tura l  b o u n d a r y  
condi t ion p = 0 for z = 0 and if ~2 is the  exterior of  the half  sphere 
{x = ( x , y , z )  : x 2 + y 2  + z  ~ >Cons t ,  z > 0}, the l imit  of  the first for- 
mu la  in (20) when y --+ OE2 gives the exact  t ransparen t  condi t ion on F~ = 
{x -- (x ,y ,  z) : x ~ -t- y2 + z 2 =Cons t ,  z > 0) if (18) is chosen for G ( x , t ; y ) .  
This could be applied to the so called corner problem.  In e las todynamics  such 
a process is complicated because the Green funct ion o f  the half  space is non  
trivial ( the Rayleigh surface wave must  be taken into account) .  
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Remark 2. To construct exact transparent conditions, instead of the limit 
o of (21), we can use the formula obtained by applying ~ to the two sides 

of (21). Using results on layer potentials which can be found in the book of 
Colton and Kress (1983), the obtained result is that  for y E 0F2, if G(x, t; y) = 
2__ 6(t-llx-yll/c) can be chosen: 4,~ IIx-yll 

Op(Y't)= 1 f 0 0 @ y  1 OPtx, 0% ~ ~( (11 x - y II)~-~ ' t -  II u -  y II/c) 

1 1 ))T(Grad~p(x, t-II u - y  i l / c )  
+(  ( x - y  II)n~-(n/n~)grad~(ll x - y  II 

+ l l x - y l l  Op t 
c Grad~( -bT(x ,  - II u - y II /c))  

II x y o~V,x, 
- c-~ II G r a d y ( [  I x - y [ I ) - ~ L  t -  II u - y 11 / c ) )  

, 0 1 1 x - y  I1~1 0 2 p ,  
I I x - y l l  On~ %0-7-g~n~ L x ' t - I l u - y l l / c )  

o I1 x - y II 1 c92P(x, t-  ~ c= ~-~" II ~ -  y I I /e) ) )u : , ,d~(x)  (38) 

where g r a d  is the 3D-gradient and G r a d  the surfacic gradient. 

Remark 3. Some very simple approximations of (22) and (38) give the Engquist- 
Majda formula (1977, 1979) of first and second orders. More precisely, if ~2 
is the half space x > 0 (the computational domain is thus x < 0) and if p 
is independent of the variable z (two dimensional problem) then (22) can be 
written: 

p(x = 0,y,t)  = - ±  ff~Ofo" oR(0, 2~r J0 ~xx Y + p cos O, t - p/c)dp (39) 

and the approximation o°@(0, y + p cos 0, t - p/c) ~- ~2~(0, y, t - p/e) gives the 
first order condition: 

10p (0 Op (0, y, t) (40) ~0-7' ,~,t) = - ~  

In the same way (38) can be written: 

OP (O,y,t) ~1ffo2~ dO ~oCt(---~-~y(O,C°S Op = y + p cos 8, t -- p/c) 

~1 02p ~ 1 02P(o, 
c°S%o-g~g-~y ~U'y+pc°s°'t-p/c) c2-5-g" y+pcosO, t-plclldp= 

1 f2~: tot O~p 
- -Jo  dOI  (sin20-~u2(O'y+pc°sO't-p/c)+ 27r do Y 
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~1 02p ,~ 1 O2p(o, 
cos v c 0---~y [u, y + p cos O, t - p/c) c 2 -E~" y + p cos O, t - p/c))dp (41) 

and the same approximation (9(0, Y + p cos t~, t - p/c) ~- 9(0, y, t - p/e))  gives 
the second order condition: 

1 0 ~ p  1 02p(o ' t) 1 02p (o , y , t  ) 
7a~a .  (° '~ ' t )  = ~ b T '  ~' c~b-~ ' " (42) 

Note also that ,  for c = 1, (41) is an other form of the initial equation used 
by Engquist-Majda: 

op 
(o, v, t) = - f ~  i~(1 - 

~d 2 

-~x 2 _~)  1/~ e i ~ + i ~ ^  p(O, ~, w)d~dw (43) 

~2 I~/~ (-~ sgn(~) )  for where the chosen square root is (1 - ~_~)1/2 =[ l -  

w~ > ~2 and/~ is the (y, t)-Fourier transform of p: 

/5(x, ~, w) -- (2~.)2 ~ e-iet-i°~Yp(x, y, t )dydt  . (44) 

Writing also (39) in this way, we find the identities (which can also be ob- 
tained by direct calculus - -  in the distributions sense): 

1///0 dO (sin 2 0(i¢o) ~ + cos O(i()(i~) - (i~)2)e -~e '+~" ~°~ °dp = 

_ ]w~ _ ~ 2  1112,  (45) 

1 dO e_i(p+iwpcosOd p = 1 (46) 
~r i~(1 - w2/~2)t/2 " 

Note finally that  when ~2 is the exterior of a vertical cylinder of radius r ' ~ x  
and p is independent of the angular variable 0 in cylindrical coordinates, we 
can also obtained the first order condition: 

~t P(rma~'z ' t )  cl ( r m ~ , z , t )  + ~rOP(rm~' z, t ) +  2rm~ ~ - 0 (47) 

and the second order one: 

1 1 02p.  , ~  ( )2P  ( r r n a x  cgtcOr ~ , z, t) + -~ ~ (r z, t) 1 c9~p ~ . ~ .  t) c ' -~-aVz =~r '~' 

; ( r  ~°x ,  z, t) 
1 Op( rm~  t) 8(rm~,)2 0 (48) 2 c r  m a x  - ~  ~ , z ,  - -  . 

Remark  ~. The right hand side of (27) can be interpreted as a "upgoing 
wave". This kind of waves splitting appears in numerous studies on inverse 
problems of wave propagation in 1D media and is used in the work of He 
(1991) and He and Karlsson (1993) as an alternative of invariant imbedding 
technique used for example by He and StrSm (1992). 
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4 Stability of the Discretizations of the Exact 
Transparent Boundary Condition (for the Axisymmetr ic  
Problem after Hankel Transform) in the Acoustic Case 

The problem (2S)-(a2),(2r) is clearly well-posed since it is equivalent to a well 
posed problem in the half-space z > 0. But this result can be proved directly 
using the properties of the Fourier transforms of Bessel functions. Briefly, in 
the case where the source terms in (30) is replaced by a function ~(k,,,t) such 

(:u3 Z n a a  x 

that  f0 (f0 ~ , - / ~ 1 / 2 m  p(~)¢~(~) ~ j  ~ < oc, making the product of (28), (29), (30) 
by ~ ,  ~ ,  150 respectively, we find by summation and integration in z: 

dE(k,t)  
d---7--- + a(k, t) <_ ~ k ,  t)S(k, t) (49) 

where: 

E(k,t) = ~lf0~=°=(I P°(k'z't) 1 2p(z)c2(z ) +p(z)I ~(k,z,t)I ~ 

+p(z) I ~8(k, z,t) 12)dz (50) 
is the acoustic energy, 

~0 Znaax s (k ,  t) = ( I ~(k, z, t) 12 p(z)c2(z ) dz) 1/2 (51) 

an d: 
a(< t) = p(z~a~)c(~m°') l ~ ( < ~ ° ~ , t )  I ~ 

Jo' --~p(zmaX)c2(ZmaX)V~(]~,Z max,~) J l (~C(~ - t'))~)~(~,zmaX,~")dt ! . (52)  

(We think that  when s(t) in (30) is sufficiently regular this study allows to 
obtain convergence results because error terms in finite differences discreti- 
sation are function of the same kind as ~). 

When the exact transparent condition (27) is replaced by the absorbing 
one (approximation of first order): 

~0(k, z m°*, t) + pc~g (k, z -~°~, t) = 0 (53) 

the integral in (52) disappears and from a(k,t) > 0 it follows the a priori 
inequality (giving the wellposedness): 

1 S(k ,r)dr  (54) uv/ -~ , t )  <__ ~ 

In the case of the boundary condition (27) the same inequality can be deduced 
from the fact that: 

X(t) = a(k, r)dr > 0 (55) 
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t 
(since then E(k,t)  <_% fo x/2S(k,r) Ev/~,r)dr = W(k , t )  so that  W'(k , t )  < 
x / ~ S ( k , t ) ~  and ~ < ~ <_ -~2 fo S(k, r)dr QED). 

Introducing the Fourier transform: 

#t(o~)- x~l fote_~O~C2~(k, zm~,, s)ds (56) 

and using (with the square root determination x/k~c 2 + s 2 ~lsl--*oo s): 

1 oo 1 iw 
~ J~o e - i~ tJ l (kc t )d t -  k c ~  (1 x/k2c 2 -¢o 2) (57) 

we find: 

X(O = pcff~ I w 12 12 
I_>kc ¢co2 _ k2c2 I~ , (~)  d~ (58) 

and (55) and (54) follows. 
We now obtain an analog result for the discretization of (28)-(32),(27), by 

elementary finite differences. The unknowns 150, 9~, v~ are sampled at nodes 
(j + 1/2)Az or jAz ,  0 < j < J -  1 (with J A z  = z ma':) and at times n a t  or 
(n + 1/2)At.  Here j and n are integers, and Az and At are the steps in space 
and time, respectively. So, we introduce as unknowns of the (direct) problem 
the three sequences of vectors: 

^n ~,n hT v z n + l / 2  z^z ,n+l  ~ z , n + l / 2 h T  pn = (Po,1/2,...,vo,J_l/2j , = ~Vo,o , ' " ,  oJ / 

, ^r,n+l ^ r ,n+l /2xT  (59) vr~+l/2 = tVl,ll2 , . . . , vl,a_l12) 

where P~,j+I/2 =/~0((J + 1/2)Az, nat)  for example. 
The discrete form of (28)-(32),(27) are then the following recursive equa- 

tions (the term t a ' ( v z )  which follows from the transparent boundary condi- 
tion will be defined later in (65) and (66)): 

p n + l  _ pn  
M 3  A t  --  k v r n + l l 2  - K T v z n + I / 2  + s n + l / 2  (60) 

v r n + 3 / 2  _ v r n + l / 2  
M1 At = - k p  ~+1 (61) 

v z n + 3 / 2  __ v z n + I / 2  
M s  At 

= K p  n+l - 1-A(vzn+al2 + v z  n+l /2 )  + t a n ( v z )  (62) 
2 " 

for n > 0, with p0 = 0, v r  1/2 ---- 0, v z  1/2 ---- 0. The discretization of the source 
term is s. The matrices M1, M2, M3, K and A of order J × J,  ( J + l )  × ( J + l ) ,  
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J x J, (J + 1) x J and (J + 1) x (J + 1) respectively are easy to construct 
from (28)-(32),(27), for example: 

1/2p0 ) 

P~ 1 
M2 . . . . .  K =  

pJ-~ 
1/2py 

1 
-1  1 

-1  .. 
1 

-1  1 
-1  

, 

A = 
P(z~°*)~(z~°*)A~ ( oi) (63) 

where pj = p( jAz) .  
When the boundary condition is (53), the term tan(vz) in (62) is zero 

and it is easy to show that the stability condition is of the form (this is the 
CFL condition in the homogeneous case; for the general case see for example 
Jurado et al. (1995a)): 

A z  
At < (64) 

vp~/1 + (krnax)2Az2/4 

In the following we are interested in the two "natural" discrete forms of the 
convolution term of the exact transparent boundary condition (27): 

ta~(vz) = kcAt ~ ]l(kc(n + 1/2-  0At)Avz t+l/~ 
1=0 

(65) 

(corresponding to the midpoint rule) and: 

n 

t a n ( v z )  = kcAt E Jl(kc(n + 1 - l )At )A(vz  1+1/2 --b v z  1-1/2) (66) 

1=0 

which corresponds to the trapezoidal formula. Multipying (60) by (p,~+l + 
p,~)T (61) by (vr '~+3/2 - yr '+ l /2)  T and (62) by (vz n+3/2 -vz '~+l/2)  ~r we 

find that the discrete analogue of X in (55) is with u '~+~/~ vz~ +1/2 

N+I 1 u~_1/2)2 x = peat ~ (~(u "+1/~ + 
n : O  

k~At (u~+1/2 + u~_l/2) ~ Jl(ke(n -Z + 1/2)At)u '-~') 
l=0 

(671 
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in the midpoint case (65) and: 

N+I 1 
x = + 

rt----0 
rl 

]gC'/~t2 (ttn-1-1/2 ÷ urt--1/2) E J1 (]¢c(T/ -- l)/~t)('ttl-1/2 ÷ ~t1+1/2)/2) 
/=0 

(68) 

in the trapezoidal case (66). Introducing 0(z)  = ,at ~-~N+I Un--1/2Zn b : 

u N+3/2, it follows that  in the midpoint case (65) we have: 

x = P c  [ "  ((co~'(0/2) - ¢os(O/2)Re(v~kcd~/'L ( d ° ) ) )  tO(d °) I ~ 
At J_~ 

with: 

÷Re(e-i(N+l)°(1 -- x/~kc~]a(ei°))O(eiO)b) ÷ b2)dt? (69) 

z~ --112 o0 
Ja(z) = - ~ z  " E J l (kc(n+ 1/2)At)z ~+1/2 . (70) 

n.~O 

Similarly, if l?V(z) = 
case (66) we have: 

At l.~n-~O~'~N+l( un- l l2  ÷ u~+l12)/2z~, in the  trapezoidal 

pc (1 - v~kcJb(d°)) l ~Y(d °) 12 dO X=-~ (71) 

with: oo 
Jb(Z) = % E Jl(kcnAt)zn " (72) 

x/2r ,~=o 

Using finally the following particular case of the Poisson summation formula 
(see for example ttenrici (1977)) for Re(s) >_ 0: 

kcAt E e-~(nkcat+r)Jl(nkcAt + r) = 
nEZ:nkcAt+r>O 

with: 

~o 2izcn 2i~rnv. (73) 
E f(s  + -k---c-c-c-c-c-c-c-c~) exp(--~-~7 ) 

~0 ~ 
f(s) = e_stjl(kCt)d t : 1 s 

~cc (1 ~/k2c2+s2 ) 

we find that  in the midpoint case (65) (here T = 1/2 in (73)): 

(74) 

pc ((cos2(012) - cos(el2)  
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)) (1 + 
/ r 2 ~ - 0 ~ 2  1 ( ~ / ( ~ )  - 1 + ~=-~ ,~#0  V~-~-~-v; - s ,~-0  2 1) 

[ U(e i°) I s + terms in b and bS)dO (75) 

which can be < 0 for b = 0, and in the trapezoidal  case (66) (here r = 0 in 
(73)): 

X =  

pc f~  ~ 1 
J_ ~ /Is~,~-o,s 1' / , s ~ - o , s  l) I W(e I s dO (76) 

,~=-oo,,~#0 V t ~ )  - tVt - -zTzv;  - 1 + 

which is always _> 0 as in the continuous case. So the trapezoidal  rule is 
stable. For the midpoint  rule we cannot conclude by the present analysis, 
but  an experiment  made  by Peti t  and reported in Fig. 1 shows tha t  good 
results can be obtained. The computat ion is made with an homogeneous 
model  of depth z ma~ = 500m, with p = l g / cm 3, vp = 1500m/s,  the source 

d ~ - c ~ ( t _ t o )  2 is located at z~ = 400m, the source wavelet being s(t) = dt ,--~e , with 
= 7rsf s and f = 30Hz, to = 53.39ms. The depth of geophones is 350m 

and the intertrace 100m. The parameters  of the numerical computa t ion  are 
k "~a~ = 1.86m -1, Ak = 0.0018m -1,  Az = 1.25m, At  = 0.5ms. 

5 C o n c l u s i o n s  a n d  A c k n o w l e d g e m e n t s  

We are aware of that  we have only sticked pins into the true inverse seismic 
problem in the framework of horizontally layered media.  However we can 
conclude into two points. 

The  first is that  the usual least-squares formulat ion of the inverse seismic 
problem for classic acquisition da ta  (surface or marine data)  is insufficient, 
al though the choice of the P-wave travel t ime to measure the depth, im- 
proves the si tuation in a manual  picking procedure. An au tomat ic  procedure 
probably  requires a combination of some kind of layer str ipping with these 
least-squares techniques. Note also that  the results of Peti t  in an other work 
show tha t  the usual least-squares work for VSP data.  

The  second conclusion is tha t  the 3D formulation of the inversion of VSP 
data  is a true inverse problem. A star t ing point of its theoretical analysis 
could be the work by Romanov.  As subsidiary s tudy to this problem, we have 
obtained, using essentially the Green formula  and the summat ion  formula  
of Bessel functions, the exact t ransparent  boundary  conditions in the t ime 
domain adapted to 1D medium with 3D propagation.  Using the Poisson 
summat ion  formula we have then shown the stabili ty of a discretization of 
one of these conditions. 

We thank D. Macd, F. Jurado,  D. Lebrun and V. Richard f rom the Insti- 
tut  Fran~ais du Pdtrole and the organizers of the congress in part icular  G. 
Chavent and P.C. Sabatier. 
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Scattering of Guided Waves in Laterally 
Varying Layered Media 

Fabian Ernst and G6rard Herman 

Department of Applied Mathematics, Delft University of Technology, Mekelweg 4, 
2628 CD Delft, The Netherlands 

Abs t rac t .  A major part of the unwanted signals in seismic data consists of waves 
which are scattered at heterogeneities near the surface of the earth. In the present 
paper we present a method to remove these waves. We formulate the scattering pro- 
cess within the distorted Born approximation in a background medium consisting 
of thin, laterally varying, layers. It is vital to be able to compute the propagation 
in the background medium in an efficient way. To this extent a modal approach 
is used, where the Green's functions consist of vertical modes and horizontal rays. 
The formulation for the scattered field then consists of factors accounting for lateral 
propagation, and a factor representing mode-to-mode scattering. 

1 I n t r o d u c t i o n  

In geophysical exploration, one tries to obtain an image of the structure of 
the deeper parts of the Earth in order to assess the probability of hydro- 
carbons being present. For this purpose seismic reflection methods are being 
used, where a source at the surface generates a wavefield which is scattered 
by the Earth and recorded by receivers located at the Earth 's  surface. Unfor- 
tunately, the strongest signals in these data are often caused by scattering of 
the wavefield at heterogeneities in the near-surface region. This part  of the 
signal contains no information on the deeper layers and can therefore be con- 
sidered as "coherent noise", tn order to remove this type of noise, methods 
like "statics" or "f-k-filtering" (Yilmaz, 1987) are currently being employed. 
These methods have been very successful in some areas, however, they fail in 
regions with a rather complex near-surface structure. 

Recently a theory for removing this type of scattering in a laterally in- 
variant medium has been developed which was based on wave theory (Blonk 
and Herman, 1994). This method has been applied succesfully to seismic field 
data (Bionk et al., 1995). In the present paper, this method is extended to 
the case where the assumption of lateral invariance is no longer valid. We 
assume that lateral variations in the background medium occur on a length 
scale which is large compared to the dominant wavelength. In the vertical 
direction we assume that  the near surface consists of thin layers, i.e., the 
thickness of the layers is of the same order of magnitude as the dominant  
wavelength. 

The method we use consists of four basic steps (Ernst and Herman, 1995): 



295 

1. Est imate  certain characteristics of the source wavelet and the background 
medium.  

2. Est imate  a scatterer distr ibution in the near surface which is consistent 
with the data. 

3. Compute  the scattered field arising f rom this near surface scatterer dis- 
tribution. 

4. Remove the computed scattered field f rom the seismic data. 

In each of the first two steps we have to solve an inverse problem. Espe- 
cially the inverse problem in step 2 is ill-posed, in the sense tha t  solutions 
are non-unique. However, we are not interested in recovering the actual dis- 
tribution, but merely in finding a distribution which is consistent with the 
data, in order to be able to compute  the scattered field in step 3 and remove 
it f rom our da ta  in step 4. 

We formulate  the inverse problem within the distorted Born approx ima-  
tion. In order to be able to compute  the scattered field it is vital to be able to 
compute the relevant Green's  functions of the background medium in an ef- 
ficient manner.  To this extent, a formulat ion is used for the Green 's  function 
in laterally varying media  that  is based on a modal  expansion. The  accuracy 
of this approximat ion is investigated by means of reciprocity. Finally, the full 
expression for the scattered field is derived, consisting of factors accounting 
for lateral propagat ion and mode- to-mode  scattering. 

2 F o r m u l a t i o n  o f  t h e  S c a t t e r i n g  P r o b l e m  

2.1 T h e  F o r w a r d  P r o b l e m  

The key step in our method  is to find a scatterer distribution which can 
explain (the near-surface scattered part  of) our data.  To this extent,  we use 
a data fitting approach which uses all da ta  available. The method is derived 
for the acoustic case, however, the derivation for the e las todynamic  case is 
analoguous. 

We suppose that  the acoustic velocity in the medium can be split into a 
long-wavelength (background) part  co and a short-wavelength par t  6c. The 
total pressure field Ptot can then be writ ten as the sum of an incident field 
Pinc, arising f rom the action of the point source on the background medium,  
and a scattered field psc due to the interaction with 5c. Both incident and 
total  pressure field are solutions of the Helmholtz equation in a halfspace: 

~2 
Ap + --~-p _- - W ( w ) ~ ( x  - xs), (1) 

where c = co for the incident field Pinc and c = co + 5c for the total  field ptot, 
6(x) denotes the Dirac delta function, and W(w) is the frequency-domain 
representation of the source waveform. Together with appropr ia te  boundary  
conditions at the pressure-free surface and at infinity, and with continuity 
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conditions of pressure and velocity at interfaces, we have a unique solution 
p. 

2.2 T h e  I n v e r s e  P r o b l e m  

Denoting pest(r,  t, s) as the scattered field at t ime ~ arising from the action 
of a source located at s acting on the near-surface scatterer distribution ~est 
and recorded at receiver r, and Ptao~t(r, t, s) as our field data, our aim is to 
minimize the error functional: 

m i n V  ~X~ j ( d t  IlH(t)(p:octt(r,t, s) - pest(r  t, s)) If 2, (2) 
[~°'*] r s¢  ~ , 

where H(t)  is a weight function which can be used to suppress parts of the 
data which contain no near-surface scattered field and/or  as a preconditioner. 

In the frequency domain equation (2) can be written as follows: 

~ r  ~w ," aCt(r,~,S ) est/ rain S-~ d~ II h(~) • ~P~o~ - ps¢ ~r, ~, s)) I1~, (3) [~'"] "-'T' 

where the * denotes convolution and the lowercase variables are the Fourier 
transforms of their uppercase equivalents. 

2.3 A n  I n t e g r a l  R e p r e s e n t a t i o n  f o r  t h e  S c a t t e r e d  F i e l d  

An integral representation for the scattered field Psc = ptot -- Pinc has been 
given by many authors (see for instance Clayton and Stolt (1981)) and is 
given by: 

where 

psc(r, ~, s) = - ~ ' ~ / ~  

~ r n -  

dxGo(r, w, s)Ptot(x, w, s)6m(x),  (4) 

1 1 
(5) 

(c0 + 6c)2 c0~ 
In (4), D is the (finite) domain containing the scatterers, and Go is the 
Green's function of the layered background medium. 

On the assumption that the scatterers are limited in strength, we can 
linearize the total field around the incident field. Retaining only the zeroth- 
order term leads to the distorted Born approximation: 

ps¢(r,w, s) = -w2W(W)/D dxGo(r,~,x)Go(x,w,s)~m(x), (6) 

where we have written pinc(r,w, s) = W(w)Go(r,w, s). The  integral represen- 
tation for the scattered field is now reduced to a readily solvable integral, 
provided we can compute the Green's function of the background medium. 

The remainder of this paper is devoted to an efficient way of computing 
this Green's function of a laterally varying background medium, consisting 
of thin layers. 
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3 Computat ion  of the Green's  Function 

In this section we derive an expression for the Green's function of a laterally 
varying medium, where the length scales of the lateral variations are large 
compared to the dominant wavelength. 

3.1 T h e  M o d a l  A p p r o a c h  

Our derivation is based on a modal  approach, and can as such be considered 
similar to the approaches which have been used in integrated optics (Mar- 
cuse, 1974), underwater acoustics (Weinberg and Burridge, 1974), and global 
seismology (Woodhouse, 1974) for many years. 

The essence of the modal  approach is a splitting of the wave field in lateral 
and vertical components. Therefore we will make the following "ansatz" for 
the wavefield away from the source region: 

a0(x ,w,  s) = E Lm(Xh,W, Sh)¢m(Xz,W, Xh). 
m 

(7) 

This formulation is the concept of "local modes" (see also (Marcuse, 1974)), 
i.e., modes which satisfy a local eigenproblem, but are no solution of the total 
Helmholtz equation. The subscript h denotes the two lateral components of 
the vector, and the subscript z denotes the vertical component.  Effects of the 
source are accounted for in initial values for Lm ; this is discussed later in this 
paper. Note that we have here a summat ion  over all existing modes. 

3.2 H i g h - f r e q u e n c y  A p p r o x i m a t i o n  

Under the assumption that  the characteristic length scale L of the lateral 
variations is small compared to the dominant wavelength, we may assume 
that the lateral part of the Green's function Lm can be written in its high- 
frequency asymptotic form (see also Blok (1979)): 

Lm(Xh,W, Sh) = e x p ( - - , 7 0 . ~ ( x h , ~ O , S h ) ) E  \ co ) A.~p(xh,w,sh),  (8) 
P 

where 0,,~ is the phase function, A,~p are the p-th order amplitudes, and e ° is 
a reference velocity of the same order of magnitude as the velocities occurring 
in the actual medium. We assume that  the 0m and Amp vary slowly in lateral 

¢9 -~ 0 ~o direction, i.e., VhOm = O(;-Z) and VhAmp (-~). 
We can now derive expressions for the various parts of the far-field Green's 

function by substituting expressions (7) and (8) into (1). 
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3.3 Lo ca l  N o r m a l  M o d e s  

Consider first the solutions ¢,~(x. ,  ~, xh) of the local eigenvalue problem: 

d2Orn { co2 } dz2 5 - -  - -  2 + c ~ - tom ¢ m = 0 ,  Ym, (9) 

together with appropriate boundary conditions at z = 0 and z = ~ .  The 
eigenvalue ~,~ can be interpreted as the horizontal wavenumber, and the 
eigenfunction ¢m(x~,w,xh) can be considered as the shape of the mode. tt  
can be shown that the modes are orthogonal with respect to the inner product  
(¢m, ¢n} = f o  ~m(Xz,W, Xh)¢n(Xz,W,xh)dxz, and they can be normalized 
to unit energy, so that we have 

fo ~ ¢~(x,,w,xh)¢~(zz,w,xh)dx, = 5~.  (10) 

3.4 L a t e r a l  P r o p a g a t i o n  

To find an expression for the lateral propagation Lm of the modes, we sub- 
stitute (7) in the Helmholtz equation, and use the definition of the local 
normal modes (9). After multiplication by 4~n(Xz, ~, Xh), integration over the 
x.-coordinate and with the aid of the orthogonali ty relation (10), we arrive 
at 

mh L~ (xh, ~, sh) + ~ L.  (xh, ~, sh) = 

// - ~  dxz{2VhLm(xh,w,sh) "¢n(Xz,W,Xh)Vh¢m(Xz,W,Xh) 

+ Lm(xh, ~, sh)¢~(Xz, ~, x~,)Ah ¢,~(z~, ~, Xh)}. 

(11) 

The left hand side of this equation has the s tandard form for propagation 
of a single mode in a medium, whereas the right hand side accounts for the 
coupling of the modes. The equations for the phase 0,~ and the zeroth-order 
amplitude A~0 can now be derived by substituting equation (8) into (11) and 

¢ 0  

collecting terms of lowest order in ~-Z-" For terms of O(1) this leads an eikonal 
equation for the phase 0n: 

~,-~, - (~0L v, ,e~) 2 = 0, (12) 

so we see that the coupling of the modes has no influence on the phase 
of the modes, and the eigenvalue n,~ can be interpreted as the horizontal 
wavenumber for the n ' th mode. 
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Collecting terms of O ( ~ )  leads to an amplitude equation for the zeroth- 
order amplitude A~0: 

// 2VhAn0 " VhOn q- AnoAhOn = --2 dxzCn(xz,w,Xh) X (13) 

~ VhOm '~hCm(Xz,CO,Xh) exp(----~(Orn -- On))AmO • 
m 

If we neglect the effects of mode coupling, which will be investigated 
later on, and note that  the right-hand side vanishes for m = n due to our 
choice of normalization, equation (13) reduces to the conventional ray-tracing 
amplitude equation 

2VhA~0 - Vh0~ + A n o A h O n  = O. (14) 

The resulting first order approximation for the Green's function of a lat- 
erally varying medium can be written as: 

Go = ~ Am0 exp(-i~.~ )era, (15) 

which implies that  we have normalized modes in vertical direction, and an 
amplitude and phase factor which can be computed by conventional ray trac- 
ing methods (see for example (Cerven~ et al.. 1988)) in lateral directions. 

3.5 A c c o u n t i n g  fo r  t h e  S o u r c e  S t r e n g t h  

Now that  we have the three basic equations (9), (12) and (14) we can compute 
the Green's function. However, for a complete expression we need initial val- 
ues for the amplitude and the phase. These initial values can be derived from 
the presence of the source by means of the method of matched asymptot ic  
expansions (Kevorkiau and Cole, 1981). The expressions to be matched are 
the outer expansion based on equation (15) and the expression for the field 
due to a point source in a homogeneous medium; this inner expansion has 
the following standard form (Aki and Richards, 1980), (Ernst and Herman, 
1995): 

. . . .  (16) 

+~-~ ~, , 

From the zeroth-order and first-order matching conditions we find the 
initial values for the phase function Om and zeroth-order ampli tude Am0: 

0.~(Sh,~, sh) ---- 0, (17) 

lim X/llxh--Sh[[A,~o(Xh,~,Sh)=a,~oCm(s. ,~,sh),  (18) 
X h ~ S h  
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where a,~o is given by 

o o=V¢o  (T (19) 

3.6 E x a m p l e  

In order to verify the assumption concerning mode coupling underlying the 
step from equation (13) to (14) we have carried out some numerical  tests. 
This  verification is done by means of reciprocity. For a given structure of the 
background model,  we have the reciprocity relation 

p(r,  w, s) = p(s ,w, r) (20) 

for the total  pressure field, i.e., summed  over all modes and without  neglecting 
mode-coupling.  We have computed  the pressure field for three cases with a 
homogeneous layer over an homogeneous halfspace. We put our source and 
receiver at X a : (0,  0, 2) and XB = (1000, 0, 4). 

The choice for the parameters  in this background model are: 
Model A: Layer thickness h varying linearly f rom 40 m at the source posit ion 
to 20 m at the receiver position. Acoustic velocities in upper  and lower layer 
are constant at 750 m/s and 1600 re~s, respectively. 
Model B: Constant  layer thickness of h -= 40 m. The acoustic velocity in the 
upper layer varies linearly from 750 rn/s at the source to 1200 rn/s at the 
receiver. In the lower layer the acoustic velocity is constant at 1600 m/s. 
Model C: Constant  layer thickness of h = 40 m. The  acoustic velocity in 
the upper layer is constant at 750 re~s, whereas in the lower layer it varies 
linearly from 1600 m/s at the source to 900 m/s at the receiver. 
These variat ions have a characteristic order of magni tude  for the problems 
we are interested in. 

The source wavelet is a bandlimited wavelet with unit s t rength between 
10 and 25 Hz, and tapered smoothly  towards zero at the edges by means  of 
a cos2-function. 

Ill figure 1 the responses for model A, B, and C are shown. The  solid 
line denotes the response of the receiver at XB for the source at XA, and the 
dashed line denotes the response for the opposite case. From these figures 
it becomes clear that  our formulation (without mode coupling) satisfies the 
reciprocity relation quite well. 

4 C o m p u t a t i o n  o f  t h e  S c a t t e r e d  F i e l d  

Tile total expression for the scattered field in the Born approximat ion  now 
follows f rom expressions (6) and (15): 
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Fig.  1. Reciprocity tests for three laterally varying models. In model A we have 
variation of layer thickness, in model B variation of acoustic velocity in the upper 
layer and in model C variation of acoustic velocity in the lower layer. It is seen 
that our first order approximation without mode coupling is accurate enough for 
the models of interest. 

/ .  

(21) 

× ~ ¢~(=z, ~, x,,)A~o(xl~, ~, sh)C ~T~(x"'-";c~(~z, ~, ~,) 

x E ¢.(r~ ,~, rh)A.0(rh, ~, xa)e-i~T"(~h'~'x")¢.,(Xz ,~, xl,) 
t~ 

For numerics| computations, we need to discretize the scatterer distribu- 
tion. Assume therefore that we have 

6re(X) = 6mi ,  X E Dh,i X D=,,i (22) 

with 
D : 0 (Dh, X D.. , , ) ,  (23) 
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Substi tuting this expression in (22) we arrive at 

Z £ dxhSmi 
7, h * 

m 

-iwr~(rh ,~,xh ) x E Ano(rh,w, Xh)e Cn(rz,W, rh)  
r~ 

X M m n , i ( w ,  X h ) ,  

(24) 

where 

a,nn,i(w,xh) = / _  Cm(Xz,aa,Xh)¢n(Xz,Oa,xh)dXz (25) 
a / )  

is the scattering pat tern from mode  m to mode  n due to a unit scatterer at 
lateral position xh, which has the form of an inproduct  of modes weighed by 
the vertical extension of the scatterer domain.  

Introducing the matrices Mi, G * and G ' ,  and the vectors S and R as 
follows: 

iVlmn,i = Mmn,i(w, Xh) (26) 

G~ng = Am0(Xh, W, Sh)exp(-- iwrm (Xh, W, Sh)Smp (27) 

G~q = Ano(rh, w, xh) exp(--iwr~(rh, w, xh)6,~q (28) 

sm = s,,) (29) 

R .  = Cm( z, r,.) (30) 

we can write the scattered field in compact  notat ion as: 

p,,c(r,~o,s) = -~2W(w) Z Smi /D S T (G~) T . Mi . GrRdxh, (31) 
i ~.,i 

where T denotes the transpose of a matr ix .  

5 A p p l i c a t i o n  t o  S i m u l a t e d  D a t a  

We now illustrate our method by applying it to s imulated da ta  resembling 
real seismic data. The model considered consists of a layer with a thickness 
of 30 meters overlying a homogeneous halfspace with an acoustic velocity of 
1600 rn/s. Tile acoustic velocity in is 600 m / s  in the southwestern corner and 
increases linearly to 900 m / s  in the northwestern corner. 

The acquisition geometry consists of a source line in east-west direction 
and a receiver line in north-south direction. The sources are located 300 m 
and 750 in respectively from the middle of the receiver line. The  spacing 
between the receiver line is 15 m. 
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The simulated data  are depicted in figure 3. Note the dispersive charac- 
ter of the incident and scattered wave, as well as the complex interference 
pattern.  After est imating an op t imal  scatterer distribution and subt rac t ing  
the scattered waves, we arrive at figure 4. Although the direct wave was still 
present in the inversion step, we see that  the scat tered waves have been 
strongly at tenuated without affecting the direct wave. 

6 D i s c u s s i o n  

In this paper a method is discussed for the removal of scattered guided waves 
from seismic data  by means of a da ta  fitting procedure. 

An impor tant  aspect of this method is an accurate and efficient compu- 
tation of Green's function for laterally varying media.  This computa t ion  is 
performed by means of an expansion in local normal  modes, where propaga-  
tion in lateral directions can be described by high-frequency asymptot ics ,  i.e., 
a s tandard ray-tracing approach.  Suitable initial conditions can be derived 
from the presence of the point source. By numerically verifying a reciprocity 
relation, we have found that  neglecting mode coupling is accurate  enough for 
our purposes. 

This formulation for the forward problem gives then rise to a formulat ion 
for the scattered field in the distorted Born approximat ion  which consists of 
factors accounting for lateral propagat ion in the background med ium and a 
factor accounting for mode- to-mode scattering. 
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Abstract. The commonly applied methods for seismic inversion are based on some 
drastic assumptions regarding the known background or macro-velocity model and 
the data acquisition, that limit their applicability in geologies of realistic complexity 
or to realistic, noisy and incomplete, data sets. The background is usually assumed 
smooth, often to such a degree that the wave field can be described by simple ray 
theory without caustics or multipathing; the data are assumed to be complete and 
noise-free. Correspondingly, the algorithms for ray-based Green's functions are, 
until now, mostly developed for smooth media. To be able to image in realistic 
backgrounds and with realistic data sets, the assumptions have to be weakened. This 
must be done on two fronts: the imaging formula and the Green's functions. A new, 
generalized, imaging formula has been developed that takes into account that real 
data are incomplete, noisy and have a limited frequency band. A new approach for 
Green's functions allows the backgrounds in the inversion to be non-smooth, and 
accounts for reflected and transmitted ray fields by organizing the ray tracing 
recursively. Combined, the two approaches allow a systematical target-oriented 
inversion, in which upper parts of the Earth model are assumed known and fixed, 
and the attention is concentrated on important details below. The new imaging 
formula, together with the realistic Green's functions, has been successfully applied 
on the imaging of a complicated horst structure from the North sea. 

Keywords. Born inversion, raytracing, Green's functions 

1 Introduction 

A seismic inversion in a realistic background remains a challenge even for 2D 
problems, because of the absence of any a priori symmetry. An advanced inversion 
formula, reducing inversion to a sort of migration, has been suggested by Beylkin 
([2], [3]), and applied with relative success ([7], and others). Nevertheless, this 
formula has a limited applicability in areas with a realistic complexity, or for 
realistic seismic data acquisitions. The inversion is based on the generalized Radon 
transform, which supposes that for a given background and a given source/receiver 
acquisition, there exists a one-to-one correspondence between a record sample and 
the parameters of an isochron crossing a background point. Even in a layered 
background this supposition fails due to existence of up- and downgoing rays, 
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crossing the background point. Besides, the inversion formula is not valid for 
incomplete data (for instance, reflection data from a narrow aperture acquisition), 
also it is hard to adapt the formula for data from a few source/receiver pairs, noisy 
data, narrow frequency band signal, etc. Also, its validity depends strictly on the 
validity of ray theory, which, despite the computational speed of ray tracing, is rather 
limited. That is why it is preferable to deal with an inversion based on a general 
wave field evaluation, rather than explicitly on ray theory. The inversion formula 
suggested by Ryzhikov and Troyan ([12], [13], [14]) allows to perform "wave field + 
Born" -, or "wave field + linearized response"- inversion. A detailed derivation is 
included in the appendix. 

Based on this more generalized inversion scheme, this paper presents an attempt to 
image a complicated horst structure in the North Sea. The background, or the 
macro-velocity model, is allowed to be non-smooth in this numerical experiment. 
The Green's functions are provided by the recursive seismic ray modeling scheme 
([9], [10], [11]), which is summarized below. To show the viability of the proposed 
imaging scheme, the inversion of a synthetic data set is presented in this paper; real 
data are inverted by the same scheme in [10]. 

2 Inversion 

Let us try to summarize why so elegant a concept on the interpretation of dynamical 
seismic data as the generalized Radon transform fails, when it is applied to raw real 
data. Mathematically, this is caused first of all by the background's Green's 
function, appearing in the Lippmann-Schwinger equation. To deal with data in 
terms of the first Born approximation ('linear'/ 'single-scattering'/ 'single- 
diffracting'), we have to start from the background's Green's function being far from 
the ray-theoretical one, otherwise we have to include many, or even an infinite 
number, of terms in the Born series (e.g. a perturbation like a full layer can be 
represented only by an infinite number of terms). I f  we want to maintain the concept 
of an inversion of the generalized Radon transform, then the 2x2 Jacobian of the 
mapping from local parameters describing an isochron to a generic source/receiver 
location should exist. Apart from that, there should be a one-to-one correspondence 
between the pair 'sample of a source-receiver pair record' - 'location + orientation of 
isochron' (for a 3D problem these are 3 parameters of a plane, tangent to an 
isochron). These requirements have quite drastic consequences for the inversion. 
Namely, they imply that: 
a) the reference medium should be fairly simple: a signal propagation just in terms 
of rays (every sample has its own 'travel time'; every unit volume element of the 
medium provides a piece of information that, for a given source-receiver pair record, 
is associated just with the pair of rays 'source - medium point - receiver'), no 
caustics, no shadow zones, locally plane isochrons, etc. (which is not valid even for a 
stratified reference medium or a medium with a constant velocity gradient). Note 
that the representation of a (generally curved) isochron by a plane is only locally 
valid, in a vicinity of the touching point of the tangent plane to the isochron (e.g. for 
a small object in a far field zone of a near to homogeneous reference medium); 
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b) the effect of the reference medium perturbation should be linear, which 
corresponds to a weak and single scattering/diffraction; 
c) for a given source the spatial parameters of the receiver should run over the full 
sphere surrounding the target of the imaging. This may be realizable in technical 
devices (e.g. tomograph), but it is unfeasible for lots of remote sensing, geophysical, 
and technical problems, that naturally suffer from a finite aperture. Any attempt to 
complete the data by an interpolation/extrapolation in data space indirectly induces 
an a priori representation of reconstructed medium parameters (e.g. a smoothing of 
data is associated with a corresponding smoothing of unknown media parameters - 
hard to analyze). 

Mathematical problems arise already when the ray-theoretical representation is fairly 
good, but apart from that, we have to: 
1. introduce a non-smooth reference model (e.g. layered medium); 
2. use a sounding signal of a finite frequency band, i.e. a signal of finite time 
duration, not a delta impulse; 
3. deal with data from acquisition involving a few sources: it is hard to avoid 
overlapping of data; 
4. interprete data from a realistic experiment design. 

Besides, as a rule real data are incomplete: they are not given in continuous-, but in 
digital form, and the set of receiver positions is finite, sparse or even random. Also 
the data are noisy, due to variety of known and unknown sources; this makes 
regularization difficult. But, of course, the main problems are generated by wave 
phenomena, which depend upon medium supposed to be known a priori and upon 
the ratios 'dominant wave length/perturbation size/source-object-receiver distances'. 
Very often such phenomena can not be described properly in terms of the ray theory; 
the latter is the base to treat dynamical data in terms of integrals over isochrons. 

Therefore we follow another way, which is not so strongly associated with the 
kinematics of first arrivals. We start from realistic assumptions about the data, 
taking into account their strong incompleteness, i.e., their inadequacy to determine 
the unknown medium parameters. For example, for seismic exploration the data are 
represented by unstacked digitized finite-band noisy seismograms, recorded by a 
sparse and probably random net of sources and receivers. The strategy of our 
approach is tied to dealing with such segments of data, which can be decoded 
properly. It means that these segments should be described by a linearized forward 
model with an accuracy induced by the value of data noise, - the latter is caused by 
the physical registration channel and unidentified sources. The proper input for the 
inversion are data residuals: observed data reduced with the wave field evaluated for 
unperturbed background. Note here, that such a reduced data set can be easily 
obtained directly in a problem of reconstruction of inclusions in a laterally uniform 
background or in a problem of seismic monitoring: these are just differential data. 
The inverse problem is posed as an optimization one: to find the perturbation of a 
background, that provides the best fitting of corresponding synthetic (linear) 
responses with input data for all source-receiver pairs. The linear response, caused 
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by a volume unit perturbation consists of: evaluation of the wave field in a 
background generated by a source (incoming wave field); application of an operator 
of interaction - the result can be interpreted as a secondary source; evaluation of the 
wave field (in the background), generated by the secondary source (outgoing wave 
field). The operator of interaction consists of a Frrchet-derivative of a wave operator 
with respect to medium parameters; e.g. for the acoustic wave equation this operator 
is the well-known second time derivative, other examples of Frrchet 
derivatives/operators of interaction for an arbitrary background are given in [12]. 
The actual inversion formula is the result of a simplified solution of the optimization 
problem, and provides the local inversion, just as Beylkin's formula does: to get the 
result of inversion in a given volume, we need to collect just linear responses of data, 
induced by unit perturbation in this volume only. It allows to parallelize the inverse 
problem very efficiently. The formula can be interpreted as follows: to reconstruct 
the value of perturbation in a given volume, it is necessary to evaluate a correlation 
coefficient between data residuals for all (relevant) source-receiver pairs and all 
linear responses induced by a unit perturbation in the given volume element. This 
correlation coefficient contains a factor, being a ratio of an average amplitude of data 
residuals and average amplitude of linear responses. 

A short summary of our approach is following (a detailed derivation is given in the 
appendix): 
1. No need to deal with ray/isochron representation: the inversion is expressed in 
terms of in- and outgoing wave fields in a reference medium, no matter how they are 
evaluated (e.g. by finite differences). This allows an essential reduction of errors, 
that is to be accounted for by a proper forward model, being a base for inversion. 
When the approximation ray + Born is adequate to real phenomena, our forward 
model is the same as the conventional one, except that we take into account directly 
the effect of registration channel (to be realized a channel should have a finite 
frequency band). 
2. The algebraization/discretization of the problem is straightforward it 
corresponds to finite number of records with digital data. 
3. The problem is then reduced to an optimization one, that allows to treat ill-posed 
problems properly. 

It is evident that strong perturbations generally can not be expressed in terms of the 
Born/generalized Born finite series. For example, if the perturbation of a stratified 
reference medium is represented by a thick layer, it leads to a phase shift with 
respect to the propagation in the reference medium. This shift can not be described 
properly by the first term of the Born series, nor by any finite number of terms. 
However, there are data segments that can be represented well as linear response. 
For example, when an overburden is known and our problem is to reconstruct an 
unknown interface of a bedrock. Although the linear response is not valid for the 
transmitted data, it is then still a good approximation for the short-offset reflected 
data. In our numerical experiments we supposed that these data can be simulated 
with the Born-diffractors located in a vicinity of the interface [4]. The solution of a 
more general 3D nonlinear inverse problem was shown in [ 14]. 
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3 Recursive construction of  Green's functions 

Like the one presented in this paper, most inversion schemes heavily rely on the 
possibility of a computationally fast forward modeling of the wave propagation, or 
the availability of Green's functions for the wave equation, in a presumed known 
Earth model (i.e. reference- or background model, see appendix equations [A4] and 
[A5]). Although the proposed inversion procedure is valid for any type of forward 
modeling, ray theory still provides by far the fastest algorithms. The ray-theoretical 
representation of the Green's function is G(x, y, rg)= ~_~Ak(x, y)expi~Tk(x, y), 

k 

where Tk(x, y) is the traveltime between two locations x and y, Ak(x, y) the 
corresponding (possibly complex-valued) amplitude and the summation over k 
accounts for multipathing. In recent years, schemes have been developed for ray- 
based isochron- or wavefront tracing in smooth media without reflecting interfaces 
([5], [6], [15], [16], [17]). They construct the Green's function for one fixed point y 
(for instance a source or receiver point) and for x running over the model, by 
propagating a set of rays from y and resample the rays at each computed new 
isochron, in order to achieve a uniform coverage of the model by rays. In such a 
way receiver captures are easily detected and each time the wavefront passes a 
receiver point the ray quantities necessary for a local evaluation of the wave field 
(arrival time, amplitude, phase shift) can be easily assessed by a simple interpolation 
from neighboring rays. By allowing the wave front to fold over itself at caustics, the 
algorithms properly take multivaluedness into account. The two-point raytracing 
problem is thereby eliminated, and the whole model is filled with (possibly 
multivalued) ray arrivals. 

The Born approximation for scattering by an obstacle is valid under the condition 
that the magnitude of the scattered wave, measured in some norm, is much smaller 
than that of the incoming- or reference wave. This implies that it is a weak- 
scattering- and low-frequency approximation (refer to appendix equation [A10]), 
contrary to the ray-based Green's functions, which are high-frequent approximate. 
A successful application of Green's functions in Born inversion therefore depends 
on how small the scatterer is, in other words, the allowed degree of complexity of 
the background; the more realistic the background, the smaller is the unknown 
scatterer and the better is the image. Ray-based Green's functions in smooth media 
impose severe restrictions in this respect, for a variety of reasons. When a smooth 
background is to be improved in order to approach a non-smooth reality (according 
to criteria not discussed in this paper), the ray fields become more and more 
multivalued. As a result, this implies that the computation time, for the Green's 
functions as well as for the imaging, increases accordingly. Also, along the caustics 
the ray-amplitude is infinite, so that the image quality is distorted (often only thanks 
to numerical inaccuracies a complete break-down is prevented). Next, for a 
sufficient accuracy the integration step-size along the rays has to decrease, 
increasing again the CPU. Finally, ray theory is not valid any more in smooth, but 
rapidly varying media, and does not represent any more the actual (finite-frequency) 
wave field. The effects of such fields on the image quality is shown in the section 4. 
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All these considerations motivate the introduction of  discontinuities in the 
background and modify the smooth medium's  Green's functions algorithms to 
include reflections and transmissions. One disadvantage o f  non-smoothness is that, 
unless diffractions are taken into account (which is expensive), it can introduce 
shadow zones in the Green's functions. However, we think that, as long as the 
Green's functions from all data points together provide a sufficient coverage of  the 
target region, imaging with shadow zones, i.e. zero amplitudes, is to be preferred to 
imaging with caustics, i.e. infinite amplitudes. Apart from diffractions, the ray- and 
wave field is already considerably more complicated in presence of  discontinuities 
than in smooth models, due to multiple reflections, which themselves may be 
multivalued again, not only because of  smooth model variations, but also because of  
possible curvature of  the discontinuities. The organization and storage of  all these 
different phases can cause formidable difficulties. 

Table 1. Synthetic velocity model Table 2. Brage velocity model 
Layer Velocity (km/s) Layer Name Velocity (km/s) 

1 1.5 
2 2.2 
3 2.9 
4 2.4 
5 2.9 
6 3.4 
7 4.2 

1 water 1.478 
2 upper sediments 1.900 
3 Tertiary I 2.020 
4 Tertiary 1I 1.815 
5 Cretacious 2.680 
6 Balder 2.350 
7 Shetland 2.950 
8 Draupne 2.900 
9 Fensfjord 3.464 

10 B rent 3.100 
11 fault zone 2.800 
12 Shetland 3.100 
13 Statfjord 3.500 

0 1 2 3 
distance (km) 
4 5 6 7 8 9 10 

v 

Fig. 1. Synthetic velocity model. The labels correspond to layers tabulated in Table 1. The gray scale 
represents velocities. The box bounds the target region. The dots along the surface denote the 
shot/receiver locations. 
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Fig, 2. Recursive raytracing of one ray cell in the synthetic model. Transmissions and first order 
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0 1 2 3 4 5 6 7 8 9 10 
distance (km) 

Fig. 3. Synthtic section for a shot at 1.0kin in the synthetic model, computed by recursive raytracing. 
Only first order reflections are shown. The labels refer to the layer in which the reflection occurred. The 
arrivals labeled 5 and 6 are used for the images in Figures 4 to 7. Wavelet: 10 Hz Gabor. 

A recursive treatment ([9], [10], [11]) solves these problems by reversing the order 
of  the computat ions;  instead of  operating with wave fronts and isochrons,  it  works 
with only one ray cell at a time, defined by two (in 2D) and three (in 3D) 
neighboring rays and two successive isochrons. This ray cell is originated at a 
source point  or at an initial surface, and propagated all the way through the medium 
until it meets some termination criterion. At  interfaces, the ray cell splits into a 
reflected and a transmitted cell, that both continue their own way, independent ly  
from each other. Both cells possibly hit new interfaces, each t ime generating new 
offsprings, that behave similarly to the original cell. The tree structure of  ray 
segments,  that thus appears, is conveniently handled by recursion. The storage 
requirement for the tree is negligible, because it depends only logari thmical ly  on the 
number o f  subdivisions in the family of  one initial celt. One part icular  advantage of  
recursion is that all relevant phases on a seismic section are generated automatically,  
without human interaction, together with all information necessary to analyze or 
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select them; this advantage has been exploited in phase identification in vertical 
seismic profiling [10]. A detailed description and evaluation of the recursion 
algorithm is given in [10], both in 2D and 3D. Also in [10], an approach to include 
edge diffractions in the recursion is presented; diffractions fill in shadow zones, but 
may be expensive. 

4 Numerical  tests 

The numerical tests have been performed on two models, a synthetic model, to 
illustrate the statements in the previous sections, and a real model, the Brage oil field 
from the Northern part of  the North Sea, which is in production by Norsk Hydro. In 
both cases synthetic data are used, in the synthetic model provided by raytracing, in 
order to isolate possible imaging artefacts, in the Brage model provided by a finite- 
difference solution of the wave equation, in order to test the viability of the imaging 
formula, without interference of typical problems of real data (like noise, multiples, 
3D effects, elastic effects, or inaccurate information on the overburden). Real Brage 
data are inverted with the same imaging technique and with non-smooth medium's 
Green's functions algorithms in [10]. 

The synthetic model is shown in Figure 1 and its velocities (constant per layer) are 
tabulated in Table 1. Special attention is given to the 'channel' structures, labeled 
'6 '  is Figure 1. Figure 2 illustrates the recursive raytracing of one cell in the 
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Fig. 4. Isochrons of the Green's function in a constant background (above). Rays are not shown. The 
reconstructed image in the target region is shown below (gray scale: perturbation of squared slowness on 
original model, thin lines: original interfaces). 
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Fig. 7. Isochrons of the Green's function in a non-smooth background (above) and image belonging to it 
(below). 

synthetic model. For a complete coverage of the model, and to obtain the shot 
record in Figure 3, ray cells are initiated in al directions from the source point. In 
Figure 2, one sees how, already from one initial cell, a quite complicated tree of ray 
segments, reflected and transmitted, emanates. Thanks to the recursive organization, 
it is possible to accumulate the ray history along the ray and to distinguish the 
phases in Figure 3 by the layer in which they were reflected. 46 locations act as 
sources and receivers in the synthetic model, from where Green's functions into the 
model are calculated. 32 receiver locations symmetrically around each source point 
are involved in the imaging. Figures 4 to 7 show the imaging with the formula 
[A19] (appendix), for a sequence of reference models that are increasingly complex 
and close to the actual model. In Figures 4 to 6, the reference models are smooth. It 
is clearly visible how the Green's functions become more and more multivalued, 
developing caustics and finally distorting the image quality (Figure 6). Figure 7 
shows the imaging with a non-smooth reference field. Shadow zones appear, but the 
Green's functions are much less multivalued and therefore realistic, and the image is 
correspondingly better (and cheaper to compute). 

An interpreted depth section of the Brage model is shown in Figure 8 and its 
velocities are tabulated in Table 2. It contains lots of diffracting edges, so that the 
ray field is disconnected and exhibits shadow zones (Figure 9, for one initial cell, 
and Figure 10 a shot record). Yet, a comparison with finite-differences, which is 
supposed to provide the complete wave field (at the expense of a much higher CPU) 
shows agreement to a high degree in arrival times, amplitudes and phase shifts 
(Figure 10 against 11). The data acquisition used for the imaging is tabulated in 
Table 3. The non-smooth reference model has been chosen equal to the velocity 
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Table 3. Data acquisition in Brage 

Number of shots 400 
Number of  receivers/shot 120 
First shot location (km) - 10.0 
Shot location increment (kin) +0.0375 
First receiver offset (km) +0.1375 
Receiver offset increment (km) +0.025 
Shot/receiver depth (km) +0.008 
Sampling rate (s) +0.002 
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Fig. 8. The Brage velocity model. The labels correspond to the stratigraphic units tabulated in Table 2. 
The gray scale represents velocities, The black dots denote diffracting edges. 

31 i/ 

-4 

distance (km) 

-3,5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 

Fig. 9. Recursive raytracing of one ray cell in the Brage model, Transmissions and first order reflections. 
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Fig. 10. Synthetic section for a shot in the Brage model at -3.9km, computed by recursive raytracing. The 
labels refer to reflections on the bottom of layers in Figure 8. Wavelet: 30 Hz Gabor. 
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Fig. 11. Finite-difference section for a shot in the Brage model at -3.9km. The labels are taken from 
Figure 10. The arrivals labeled 12 are used in the inversion to obtain the image of Figure 13. Wavelet: 30 
Hz zero-phase Ricker. 
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Fig. 12. Non-smooth reference model for inversion. The target is bounded by the rectangular box. The 
gray scale represents velocities. The thin lines denote the isochrons of the Green's function for a source at 
-3.9km, 
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Fig. 13. Image of the horst interior. The grey scale denotes the reconstructed perturbation of the squared 
slowness on the reference model given in Figure 12. The thin lines represent the geometry of the Brage- 
model, in which the (finite-difference) synthetic data have been generated (see Figure 11). 

model from the interpreted depth section (Figure 8), as far as the overburden is 
concerned (indicated by indices 1 to 6), and chosen equal to a constant 
representative velocity in the lower part of the model. The target zone is bounded by 
the rectangular box in Figure 12 and contains the most important, interior, part of the 
horst. Also shown are the isochrons of the Green's functions for an exemplary 
source point at -3.9km. The image derived from the finite-difference data is 
displayed in Figure 13. The geometry of the interfaces is very accurately 
reconstructed. Dynamical information is available as well, in the form of a 
reflectivity measure; the right fault has a sharp contrast, the fault on the left almost 
no contrast. 
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Appendix  - Im ag in g  formula  

Scattering phenomena for the scalar wave equation 

A¢(X, t) - U2(X) 32(9(X' t) 3t 2 = S(x, t) [A1] 

can be analyzed by separating the squared slowness u2(x) in a reference field and a 
perturbation on it: 

u2(x) = u2(x) + ~u2(x) , [A2] 

and expanding the wave field ¢(x, t) in a Born series 

~(x, t) = ~ e"¢n(x, t ) .  [A3] 
n=0 

Inserting [A2] and [A3] in [A1] and collecting the e ° terms gives the wave 
propagation in the reference model: 

A~0(x, t) - u~(x) 32~°(x' t) = S(x, t) [A4] 
~t 2 

which is formally solved by the Green's function G(x, y, t, r): 

+ o o  

Co(X, t) = j J G(x, y, t, r)S(y,  f )  dy d r .  [A5] 
M - o o  

In [A5], M denotes the spatial support of the integrand; the time integration extends 
from - to to + oo, but in practice over the length of a seismic trace. In [A1], [A4], 
and [A5], S(x, t) denotes the source density. For a point source, located at x s, 

S(x, t) = 6(x  - xs)s(t) [A6] 

and 

+ o o  

~o(X, xs, t) = j G(x, xs, t, r )s(r)  dr . [AT] 
- o o  

Collecting the e I terms results in the equation for the first-order scattering: 

A¢l(X, t) --  U 2 ( X )  O2~I(X' t) = u2(x ) O20o(X, t) [A8] 
Ot 2 3t 2 ' 

which is again formally solved by the Green's function 

+oo 
0200(y, 

, ) :  _f f c<x, y, ,, 
T) 

3r 2 dy d r .  [A9] 
M - o o  

The frequency domain expression for [A9] reads 
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Ol(x, co) = - co 2 [ G(x ,  y, co)u2(y)Oo(X, co) d y .  [AIO] 
M 

For a reference wave excited by a point source (see [A7]) 

+ c o  

~200(y, ¢1(x, xs, t)= _[ [ G(x, y, t, z)u~(y) 
Xs, T) 

~-2 dy d r .  [Al l ]  
M - o o  

The image is derived from the least-square misfit between the first-order scattered 
wave and the observed wave o°bs: 

4-oo 

F[u2 ]=_1]~ f 2 r,s -- (¢PO(Xr' xs' t ) +  q)l(Xr, X s, t)[u 2] --t/)°bS(x r, X s, t)) 2 dt .[A12] 
- o o  

In [A12], the summation is over all sources xs and receivers xr available in the data 
acquisition. Here, and in what follows, we put e = 1. F[u 2] is a functional, that 
assigns a real number to each squared slowness distribution u2(x); the dependence 
on u 2 is denoted by square brackets. Its gradient with respect to u 2, Vu~F[u2], is a 
function of a spatial location y. In the first Born approximation, the scattered wave 
¢1 depends linearly on u 2, and F[u 2] has one minimum, which follows from 

Vu~F[u2](y) = O . [A13] 

An expression for Vu: F[u 2] is obtained by differentiating [A12]: 

+ o o  

Vu2F[u2](y)  E [ (Co(X,, x,, t)+ ¢,t(x,, x,, t)[u 2] 
r,~ _ ~ [ A 1 4 ]  

. /  

- (~°bs(x  r, X s, t ))Vu:Ol(X r, x s, t)[uE](y) dt  . 

In [A14], Vu2¢l(Xr,  xs, t)[u2](y) is a function denoting the gradient of the scattered 
wave with respect to the squared slowness perturbation. It can be expressed with 
help of [A11]: 

I ( x r ,  X s, y, t ) -  Vu2~l(Xr, Is, t ) [uE](y)= 

+ co 3 2 [ A 1 5 ]  

= f G(xr ,  y, t, r)-~Tr2 Co(Y, xs, r ) d r .  
- o o  

The solution to [A13] can be found by expanding V.~F[u 2] around the reference 
field u02: 

V.2F[u2] (y )  = V . :F[u~] (y )  + f v .2V .2F[u~](y ,  z)(uZ(z)  - u~(z)) dz  . [AI6] 
M 

The Hessian operator of F[u 2] is represented by the integral kernel 
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- } - o o  

Vu~Vu2F[u2](y, z) = ~ f I (x  r, X s, y ,  t)l(xr,  xs, Z, t) dt . [A17] 
r~s  

Following [1], we approximate the Hessian by replacing it by its diagonal: 

+ o o  

Vu2Vu2F[u~](y, z ) -  ~ f [(Xr, xs, y, t)I(Xr, X s, Z, t ) ~ ( y -  Z )dr .  [A18] 
r , s  - -  

The image follows then from [A13] and [A16]: 

. ~ ( y )  = . 2 ( y )  _ u~(y )  : 

+ 0 o  

~_~ f (OO(Xr, x s, t ) -  o°bS(Xr, X s, t ) ) I (x  r, X s, y, t )d t  
,.., _°oo [A19] 

+ 0 0  

I l(xr '  xs, y, t) 2 dt 
r , s  _ c o  

The enumerator of [A19] is proportional to the data misfit and vanishes for a 
background equal to the real model. The denominator is referred to as information 
sensitivity and quantifies the possibility to reconstruct the image, given a certain data 
acquisition. The implementation of [A19] requires Green's functions to be 
calculated for all source and receiver locations towards the target region. 
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A b s t r a c t .  We present a non-linear inversion scheme in order to recover the shape 
of seismic reflectors using reflection traveltime data without need of traveltime 
picking. The use of fully non-linear approach such as simulated annealing tech- 
nique reduces the importance of a-priori assumptions on model parameters but 
requires many computations of the forward problem. We have implemented a par- 
allel ray tracing (PRT) code based on PVM message-passing library which speeds 
up 2D two-point ray ~racing and runs on general purpose multi-computers or on 
massively parallel machines such as Cray T3D and Connection Machine CM-5. 
For 30 sources and 96 receivers per source, we are able for the investigation of 
the shape of an interface beneath an heterogeneous layer in approximatively 600 
forward modelings and less than 4 hours on 8-node T3D partition. We find that 
simulated annealing method permits us to minimize the objective function based 
on semblance for synthetic data of complex Earth models. 

1 Introduction 

Truly non-linear mul t i -parameter  opt imizat ion in seismology has not been 
widely developed in spite of pioneer work of Press (1968) because the compu-  
tat ion of the associated forward problem turns out to be too t ime-consuming 
for most  cases. Only specific problems as static est imation (Ro thman  (1985), 
Ro thman  (1986)) or velocity analysis (Landa et al. (1989), Jin and Madar iaga  
(1993)) in seismic exploration, earthquake location (Sambridge and Gal lagher  
(1993)), focal mechanism (Kobayashi and Nakanishi (1994)) or simple seismic 
waveform inversion (Sen and Stoffa (1991), Sen and Stoffa (1992), Sambridge 
and Drijkoningen (1992)) have been tackled using non-linear inversions. The  
main characteristic of these approaches is a relatively simple es t imat ion of 
the forward problem used in the optimization.  

Many geophysical inverse problems have misfit functions which are non- 
quadrat ic  and which present local minima. We shall be interested in the 
seismic reflection inversion which is one of these non-linear problems.  Travel- 
tirnes for reflected waves depend on ray paths which locate velocity anomalies 
of the different media as well as reflection points on the unknown interfaces. 
The solution of this problem is based on linearized approaches (Farra  and 
Madar iaga  (1988), Ivansson (1986)) where one starts  from an initial model  
and tries to determine locally a better  model which makes the misfit function 
decrease. A good strategy to find an improved model is based on the gradient 
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of the misfit function but a step procedure as the simplex method (Nelder 
and Mead (1965)) is an alternative which prevents the relatively unstable 
gradient estimation. 

Global methods as grid search or Monte-Carlo approach will still be too 
time-consuming for such problem where the most important  step is the ray 
tracing forward modeling in order to compute  synthetic traveltimes. Interme- 
diate methods named semi-global searches as simulated annealing algori thms 
or genetic algorithms are worth investigating alternatives to linearized ap- 
proaches. We suggest such analysis in this article where we shall focus our 
attention in efficient ray tracing tool. A brief presentation of a parallel ray 
tracing strategy will be given. Using such fast formulation of the forward 
problem, we shall analyze inversion approaches which mix local features as 
well as semi-global a t tempts  and we shall show that,  indeed, semi-global 
search is feasible for the seismic reflection inversion. 

2 F o r w a r d  m o d e l i n g  o f  t r a v e l t i m e s  

2.1 R a y  t r a c i n g  for  s e i smic  wave  i n t e r p r e t a t i o n  

The forward problem is the computat ion of traveltimes from a source point at 
each observer and, for such purpose, one may perform ray tracing between the 
source and the receiver. Tracing rays inside a medium is a powerful tool for ex- 
tracting information, because the computed quantities (traveltime, slowness 
vector, polarization vectors and amplitude) are related to simple quantit ies 
in a seismogram and are perfectly associated with different features of the 
medium (Cerven3) et al. (1977), Chapman (1985), Virieux and Farra (1991)). 
Ray tracing method is a too time-consuming algorithm which cannot  be used 
as it is for semi-global inversion. An intrinsic property is very appealing for 
speeding up the forward computation:  each ray can be traced independently 
from the others. This feature can be exploited in parallel computing where 
different rays are computed on different machines. 

2.2 P a r a l l e l  R a y  T r a c i n g  m e t h o d  ( P R T )  

Whereas, in a sequential algorithm, rays are computed one after the other,  in 
the parallel ray tracing, rays are computed on different processors at the same 
time leading to major  speed up in term of computation time. This approach, 
namely ray distribution, is opposed to a data  distribution strategy where 
the medium is split into sub-media among processors and where rays are 
passed from processor to processor during their propagation as they cross sub- 
medium boundaries. The ray distribution approach requires the knowledge of 
the entire medium at each processor. As soon as the technology has provided 
enough memory for each individual processor, this ray distribution approach 
has been a worth investigated strategy and turns out to be simpler than the 
data  distribution approach. 
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3 Inversion 

Our fast forward problem allows us to investigate non-linear s t ra tegy for 
inversion of reflection travelt ime da ta  to recover reflector shape. We define 
the model space and the semi-global s t rategy of inversion. 

3.1 P a r a m e t r i z a t i o n  

We will represent model parameter  by a vector rn given by 

m ___ [ml ,  raM] r 

while da ta  d is a set of seismic traces for different source-receiver pairs 

d = {U j} 

where i denotes sources and j receivers. We are interested in seismic re- 
flectors which delimit 2 layers of different acoustical impedances.  Different 
parametr izat ions  are possible to describe such an Ear th  model, but we choose 
in order to allow for complicated shapes to parametr ize  reflector by B-splines 
(Virieux and Farra (1991)). B-splines are parametr ic  curves approximat ion  
of control point positions. For 2D geometry, each control point Ci(x, z) has 
2 components ,  the offset position x and the depth z. The  index i denotes 
point position in the ordered list of control points. It is hard to solve both 
x and z at the same t ime because this can lead to unphysical solution for 
example with splines that  intersect. We choose for all the control points to 
set the x coordinate and to look only for the z coordinate. Thus, each model 
parameter  mi is the vertical location of a control point which defines part  of 
the searched reflector. 

If we assume that  each pa ramete r  takes its value in a finite dimensional 
discrete set of size P,  the size of model parameter  space for N parameters  
is then pg (actually the total  number  of possible models).  Increasing in 
size of the parameter  space is exponential  with number  of parameters .  If  
we link inversion problem size with parameter  space size, we can s ta te  that  
complexity of the inversion grows in O(N!) which denotes a NP-comple te  
problem, that  is a problem which cannot be solved in a t ime polynomial  
function of the number  of parameters .  We shall discuss later on how to solve 
NP-complete  problems. 

We see the importance to consider a restricted set of pa ramete rs  to re- 
duce inversion problem size. But there is a tradeoff between the number  of 
parameters  (number of control points) of the inversion and the complexi ty  
of the solution (complexity of the reflector shape). Another  problem which 
prevents from taking into account only a small number  of points is the fact 
that  they are not completely independent.  If  they were, we could consider the 
inversion of one point at a time. Nevertheless, by definition, B-spline control 
points have a local control on the shape of reflector. Therefore it is possible 
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to split the inversion of a long reflector into inversion of shorter parts  with 
possible overlap, which must  be found empirically. 

Because of acquisition geometry,  we cannot invert seismic reflection da ta  
for both velocity and reflector shape at the same time. Even if the veloc- 
ity information is present in the large offset traces of reflection data,  trying 
to recover both shape and depth of reflector and velocity above leads to 
non-unique solutions. Thus, let us assume the possibly heterogeneous veloc- 
ity above the searched reflector to be known, determined by some velocity 
analysis techniques or any a priori information we can have. 

3.2 E r r o r  f u n c t i o n  

For a given model m, the ray tracing forward modeling opera tor  g permits  
to compute  traveltimes r which can be multivalued. 

where b denotes different branches with different arrival times. 
We define the error function E(m) as the opposite of measure of trace co- 

herency or semblance within a given t ime window from computed  travelt ime, 
thus following the notat ion of Landa et al. (1995) : 

2 

K 

E E E 2 

2 

were 6t denotes the sample interval and K6t the time window for sem- 

blance calculation. 

3.3 Optimization by simulated annealing 

Inversion process is recast into minimizat ion of the error function. Because 
relation between data  and model is non-linear we expect the error function 
to have several local min ima and we need a fully non-linear approach to solve 
the problem. The NP-complete  nature of the problem prevents from applying 
grid search enumeration method,  thus some heuristic as to be employed. We 
shall now discuss the simulated annealing (SA) strategy. 

SA is a stochastic method derived from Monte-Carlo. Pure Monte-Carlo 
is a random search in the model space tha t  possibly spends t ime sampling 
regions of low interest where error function is high. SA and genetic algori thms 
(GA) permit  to restrict investigation around regions of high interest where 
the error function is low. Let us describe one of the basics SA algori thm 
called Metropolis (Metropolis et al. (1953)) : given a current model m~ with 
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error function E ( r n i )  do a perturbat ion of mi into rni+1 and compute the 
new error function E ( m i + l ) ,  Let zSE be the difference in the error function 
between mi and mi+l i.e. : 

If A E  _< 0 replace mi with mi+l,  if A E  > 0 do the replacement with the 
probability 

P = e x p ( - - ~ )  
where T is a parameter called temperature.  The perturbat ion-acceptance 
test is repeated for a large number of iterations at a fixed tempera ture  before 
temperature  is lowered, following a cooling schedule. We shall address the 
following issues :choice of initial temperature,  choice of cooling schedule, law 
of perturbat ion of the models, and stopping criterion. 

3.4 V e r y  fas t  s i m u l a t e d  r e a n n e a l i n g  ( V F S R )  

The VFSR algorithm proposed by Ingber (1989) uses a probabili ty distribu- 
tion for model parameter generation such that  a slow cooling of temperature  
is no longer required (Sen and Stoffa (1995)). Let m k be the i th model pa- 
rameter at iteration k such that 

k < rnmaX m rain ~ m i _ 

where m [  nin and m~ naz are minimum and maximum values of the model 
parameter  mi and a + 1  the model parameter  at next i teration such that  Ht i 

.¢+' = + y, ( m ?  °" - m ?  ' ° )  i 

where Yi is a random number in the range [0, 1] from Ingber proposed distri- 
bution. A random number u drawn from uniform distribution U[0, 1] can be 
mapped into Ingber distribution using the following relation 

where sgn 0 is a function that returns the sign of its argument and Ti is 
current temperature.  From this distribution, global minimum can statistically 
be obtained by using the following cooling schedule 

(k) : r0 (-c, k' M) 
Where k is the annealing step, To the initial temperature  and ci a decay factor 
that permits tuning the cooling schedule for specific problems, we choose 
ci = 1. The acceptance test remains Metropolis. There is also possibility 
with VFSR to control each parameter with different temperature  this can be 
interesting when dealing with parameters of different nature. A strategy for 
reannealing (increase of the temperature) is also proposed. 
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3.5 U n c e r t a i n t y  e s t i m a t i o n  

The best fit model parameters  obtained during first step is one element of the 
solution of an inverse problem. A second step which shall pe rmi t  to quantify 
uncertainties is necessary to deliver the complete solution. We propose to 
perform an importance sampling around the solution obtained by VFSR for 
different temperatures  and apply a technique from mult idimensional  statis- 
tical description of numerical data.  

From the total number  of tested models n during this second step, we can 
build mat r ix  of observations jtd such that  

~i . . . . . . . .  -~6 l 

l M =  

~? ~J 

The jth model mJ [mJ , . .  J = ., raM] has an error function E (mJ )  which 
mesure the fit of the model with data .  From this error function, we express 
probabil i ty distribution for model mJ by 

exp(-(E(mJ) + C)) 

~(mJ) = ~ exp(-(E(mJ)+ c)) 
J 

where C is a constant which aim is to make the error function positive. We 
choose C = -min(E(mJ)). For a given paramete r  p and for every tested 
models j we represent function 

(see Fig. 3). 
We group these probabilities into a diagonal mat r ix  

-P(rn 1) 0 
= :P(m "~) 

0 ~,(,,e') 
We derive mean model 

g = M T D 1  

where 1 is a vector from ~n with all its components  set to 1. And finally 
variance-covariance matr ix  

V = MTI)M --ggT 

Standard deviation represents square root of diagonal 61ements from V. 
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4 S y n t h e t i c  e x a m p l e  

The  aim is to investigate the inversion procedure to recover a given interface 
f rom synthetic reflection data .  We shall discuss model parameters ,  misfit 
function for the inversion kernel, influence of noise and uncertainties in the 
shape of the interface. 

The model we build is one reflector with complex shape which develops 
multivalued travelt imes (Fig. 1). In order to generate synthetic da t a  we choose 
a geometry of acquisition which is typical in marine seismic explorat ion with 
96 traces, 100 shots located at the surface, 25 m between traces, 300 m near 
offset, and 50 m between shots. An sample of the synthetic da t a  is shown 
Fig. 2. 

.a -a .~ o D i s t ance  ( k i n )  2 a 4 s 

Fig. 1. Ray tracing from shot point number 20 in the subsurface model built for 
validation of inversion method by VFSR. Crosses denote B-spline control points 
defining the reflector shape. Notice the focusing/defocusing effect due to the syn- 
cline shape of the reflector. 

Searched reflector is parametr ized by a set of 24 control points 1 km 
spaced in x in the range [ -3 ,  20] kin. On the edges of the model at position 
-3 km and 20 km three superimposed control points delimit the reflector 
extend, the effect of these hard bounds is to bias obtained solution on the 
edges (see Fig. 3). The search space for z coordinate is the interval [0.8, 2.5] 
kin. Model parameters  are a subset of the 24 points which correspond to 
the points that  are actually resolved by the da ta  in the following way : we 
consider a set of shot points, the traced rays from these shots tha t  reflect 
on tile interface we want to image hit a piece of this interface at a given 
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Sequential Number 
20 40 60 80 

- F i l e  P T - 2 0  - V R  : 0 - G a i n / D i s t  : 0 - 

Fig. 2. Synthetic data for shot point number 20 located at 1 km offset at the surface. 
The thin line represents traveltimes obtained by forward modeling applied to the 
solution of the inversion by VFSR. Notice that the shape of the reflector gives rise 
to multivalued traveltime which are recovered. 

location, it is easy from hit point to derive which control points influence 
area around hit point. These control points are added to the set of model  
parameters .  Thus, model parameters  are not determined prior but  deduced 
from which da ta  is used for inversion. If we invert only one shot, pa ramete r  
set will be smaller than if we invert for 10 shots because rays f rom the 10 
shots i l luminate a larger port ion of the reflector. Number  of shots determines 
number  of model parameters.  If we take few shots, few model pa ramete rs  are 
involved, thus dimension of model space is small and inversion can be fast, 
but  it is possible that  we do not have enough da ta  to uniquely determine the 
solution. If we take a lot of shots, model parameter  space dimension is larger 
and inversion longer and solution may become instable. The VFSR algor i thm 
gives good results very fast (less than 3 hours on a Cray TaD)  for a number  
of pa ramete r  around 10. We choose to consider inversion of 30 shot point  
data,  given current geometry these 30 shots i l luminate 7 control points. As 
we want to image all the reflector, after a VFSR result has been found, we 
shift the 30 shot points to recover next piece of reflector. Solution with 100 
shots is shown Fig. 3. 



3 3 1  

Distance (kin) 
-,~ . . . .  .,~ . . . .  - :  . . . .  ,~ . . . .  ! . . . ~ . . . .  ,~ . . . .  f . . . .  ,~ , . 

o.o I t 
t 
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o.s. [ 

9 lo [ ]  

8 2,3 

F ig .  3. Solid lines are the result of the inversion by VFSR of synthetic reflection 
da ta  for 100 shots and 96 receivers for each shot. Dash line is the original reflector. 
This solution for 100 shots has been constructed from several pieces of solution 
from the inversion of 30 shot sliding windows. The retained control points in the 
final solution are those that  have the maximum hit count. The solution is not good 
around point 2 and 3 due to low hit count in this area and to the fact that  limit 
of this edge is fixed by 3 superimposed control points at the same position. It is 
not the case on the other edge where limit is not hard fixed. The gray area figures 
uncertainties calculated by Gibbs importance sampling 200 m around the result of 
the inversion by VFSR. The absolute value of these uncertainties has no meaning, 
the interest resides in the relativity of the measure when considering different areas 
of the reflector. 

5 Conclus ions  and perspect ives  

T h a n k s  to para l l e l  f o r m u l a t i o n  of  forward p rob l e m we can t r ace  rays  very 
efficiently in an he te rogeneous  m e d i u m .  Therefore ,  we are able  to  a p p l y  ful ly  
non- l inea r  technique  to solve t r ave l t ime  inversion p r o b l e m  by s tochas t i c  ex- 
p l o r a t i o n  of  m o d e l  p a r a m e t e r  space.  Mon te -Ca r lo  techniques  are powerfu l l  for 
such e x p l o r a t i o n  b u t  are  st i l l  to expensive.  Soph i s t i c a t e d  M o n t e - C a r l o  proce-  
dures  such as VFSI~ p e r m i t  to r ap id ly  f ind a re la t ive  good  s o l u t i o n  avo id ing  
to get  t r a p p e d  into  local m i n i m a  of  error  funct ion .  T h e y  also p e r m i t  to char-  
ac ter ize  uncer ta in t i es ,  thus  solving the inverse p rob lem.  Cohe rency  func t ion  
can be used in the  f r amework  of seismic reflect ion invers ion in o rde r  no t  to 
have to pe r fo rm t r ave l t ime  picking.  P lans  are to inver t  real  d a t a  set and  to 
s t u d y  behav iou r  in presence of m a n y  reflectors and  noise. 
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Asymptot ic  Theory for Imaging 
the Attenuat ion Factors Qp and Qs 

Alessandra Ribodett i  and Jean Virieux 

UMR G~oscienees-Azur Sophia Antipolis, 250 Avenue A. Einstein, B£timent 3, 
F-06560 Valbonne, France 

A b s t r a c t .  Linearized inverse scattering problem in anelasticity is solved for per- 
turbations in different parameters treating P-to-P, P-to-S,S-to-P and S-to-S data. 
Three steps are required for finding the material parameters of the medium, i.e. the 
density and the complex relaxation functions. In a given smooth reference medium, 
an high-frequency Green function is expressed as a function of traveltime, ampli- 
tude and attenuation factors. For a slightly different medium, the perturbation of 
the asymptotic Green function is expressed as a linear integral over the diffracting 
region containing the model perturbations using the first-order Born approxima- 
tion. The inversion scheme is developed in the frequency domain where we were 
enable to set up an analytical kernel for the Born approximation of asymptotic 
anelastic solutions used for the forward problem and an approximate analytical 
kernel for the linearized inversion. Radiation patterns are analysed to show that 
the simultaneous multiparameter inversion is possible when one takes into account 
the parameters related to attenuation. The iterative asymptotic inversion might 
resolve the difference between the elastic parameters and the attenuation factors. 

Introduction 

Many practical problems of nondestructive testing, medical imaging,  seismic 
exploration, consist in finding variations of mater ial  parameters .  

Many workers have tried to elaborate algori thms for the reconstruction 
of elastic parameters  (Bleistein (1987), Beydoun and Mendes (1989), Crase et 
a1.(1990), Beylkin and Burridge (1990), Jin et a1.(1991), Lambar5 et a1.(1992)) 
using different approximations and approaches. Few have tried to elabo- 
rate algorithms using the complete seismogram for recovering the at tenu- 
ation (Tarantola (1988)). In this paper  we present an asymptot ic  method  for 
imaging the at tenuat ion factors Qp and Qs for P and S waves, following 
the methods developed for the reconstruction of elastic parameters  (Jin et 
a1.(199t), Lambar~ et a1.(1992)). 

Jin et a1.(1991) have proposed a new procedure for finding the Ear th ' s  
structure f rom seismic data.  The  inversion method follows the opt imizat ion  
approach but uses specific features of the selected asymptot ic  operator  relat- 
ing parameters  and seismograms in order to express the inversion through 
analytical expressions. This approach is fast  and allows different da ta  acqui- 
sition geometries (Lambar~ et a1.(1992)). This method has been extended to 
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diffusive electromagnetic phenomena by Virieux et a1.(1994) and in viscoa- 
coustic media by Ribodetti et a1.(1995). In viscoelastic media description of 
wave propagation requires several different scattering modes, such as P-to-P, 
P-to-S, S-to-P and S-to-S, which are developed in this paper. 

We present an high-frequency approximation with attenuation in a smooth 
reference medium. The attenuation feature of the propagation is represented 
by a complex Lam6 coefficients i and /5 while the density may also vary 
spatially in this smooth reference medium. 

Linearization of the inverse scattering problem is achieved by considering 
the actual medium as a perturbation of (a spatially varying) background 
medium. Then by using the single scattering (Born) approximation, we obtain 
a linear relation between model perturbation parameters and seismogram 
perturbations. This linear relation is asymptotically inverted in the frequency 
domain using an iterative quasi-Newtonian inversion based on a least-squares 
criterion. 

The radiation patterns analysis shows that the simultaneous inversion 
for the elastic and anelastic parameters is possible and the attenuation does 
not change the elastic radiation pattern components. A good description of 
the model parameters is studied. In this paper mathematical analysis of the 
linearized inverse scattering problem for anelastic medium is proposed. 

1 W a v e  p r o p a g a t i o n  a n d  B o r n  a p p r o x i m a t i o n  

1.1 Model ing  anelastic attenuation 

Seismic attenuation is a potentially useful parameter for characterizing and 
monitoring hydrocarbon reservoirs in conjunction with seismic velocity. The 
most common measures of attenuation are the dimensionless quality factor 
Q and its inverse Q - 1  As an intrinsic property of rock, Q is a ratio of 
stored energy to dissipated energy. O'Connel and Budiansky (1978) discussed 
various definitions of Q and their relationships to the viscoelastic constitutive 
equations for a given material. 

The amount of intrinsic attenuation present in seismic waves is not ac- 
curately known and the additional contribution of local scattering to the Q 
factor increases the complexity of the analysis (Hatzidimitriou (1995)). We 
assume that the Q factor, sometimes called apparent Q factor, incorporates 
effects which modify locally the amplitude of the wave during propagation. 
The attenuative properties of rocks can be estimated by a wide range of 
measures. For low-loss linear solids, a definition of Q may be found through 
extented stress-strain relations. In these anelastic media, the correspondence 
principle (White (1965), Eringen (1980), Ferry (1961)) allows one to replace in 
the frequency domain the elastics moduli A and # by a complex ~ = AR + i )~I 
and/5 = #n + i #s. In this model, the parameters ~R, P.n and the density p 
controle wave velocity, and the imaginary moduli i,kr and ittr govern energy 
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damping. A linear model for attenuation of waves is presented, with Q, or the 
portion of energy lost during each cycle or wavelength, exactly independent of 
frequency (Kjartansson (1979), Aki and Richards (1980)). If the attenuation 
is small, then the velocities and attenuations coefficients can be expressed 
convenientely (Mavko and Nur (1978)). For compressional waves, 

and 

~AR + 2pR 
: , ( 1 )  

P 

1 - -  hi ~- 2~I ( 2 )  

QP AR Jr 2pR' 

where AR = ~R - 2/3#R, ~R is the real part of the complex bulk modulus. 
For shear waves 

and 

1 _ , /  (4) 
Qs I~R" 

In the following, we will consider an anelastic model characterized by a 
density p and complex relaxation functions 

A(x) : ~(x) + iA(x), (5) 

p(x)  = , ( x )  + i . ( x ) ,  (6) 

where A(x) and #(x) are the elastic parts and the factors A(x) and ~(x) are 
the terms related to specific attenuation. 

1.2 R a y  t h e o r y  

We study the propagation with attenuation and we shall introduce the corre- 
sponding high frequency approximation. For a source position s = (sl, s2, s3), 
let G(s, x, ~) be the displacement field at the point x which satisfies the elas- 
todynamic equation of motion, 

p~2Gj~ + (g~mpqGz,q),m = - -~S(X -- S), (7) 

where, for an isotropic medium, we have the following expression for the 
elastic parameters 

91mpq(X) =/~(X)SlrnSpq ~- #(x)(Slp(~rnq "~- 5lqSmp). (8) 
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The solution ajl(s,x,w) is the j t h  component of displacement at the point 
x due to a point force in the / -d i rec t ion  applied at the source s. The density 
is denoted by p and the krSnecker's symbol @. For convenience in writing, 
we have omitted the dependence of Gjt on parameters (s, x, w). 

Through the correspondence principle, the attenuation is described by 
changing the Lam~ constants ~ and # by their complex equivalent expression 
A and ti and the expression (9) 

po22Gj l  ~- ( g l m p q G j p , q ) , m  = -(~j l (~(  x - s), (9) 

expresses the propagation with attenuation. 
We change from component notation to intrinsic notation by letting Gj  -- 

(Gjl, Gj2, Gj3), j = 1, 2, 3 and Ij the vector having 1 at the place j and 0 
elsewhere . The equation (9) becomes 

pw2Gj + V • (9(VGj + VG3T)) = -IjS(x- s), 

which can be modified into 

(10) 

pw2Gj + V~(VGj  + VGj T) + ~ [ V ( V .  G)j  + AGj]  = --I jS(x--  s). (11) 

For a smooth heterogeneous medium, the asymptotic time-harmonic expres- 
sion for the 3D Green function is 

G0(s ,  x,  = A0(s ,  x,  (12) 

for a point source located at s; A0 = (Ajol,Ajo2, Ajo3), j = 1,2,3 . The 
traveltime T is the integration along the ray of the slowness 

and 

TP(s, x) = f ° ( " )  X/p(~)/(A(~) + 2p(~)) d~ 
Ja0(s) 

(13) 

= / o ( x )  
T s(s, x) X/P(~)/#(~) d~ (14) 

Joo(s) 

where cr is the arclength along the ray between the source s and the point x; 
the superimposed P and S indicate P-wave and S-wave. The amplitude A0, 
the first term of the serie ~ + ~  Ak (s, x, w)/(iw) k, has a frequency dependence 
related to our selected dependence of the attenuation. The amplitude follows 
from the transport equation obtained with some calculation following the 
same procedure as Cerven)) and Hron (1980) and as Caviglia et a1.(1990): 

AP(s ,x ,w)  = /(pcpJ)(cro(s)) V i Ao( o(s)) I 

-~ F ~(~ (A(~)+2,(~))/2cp(~)(~(~)+2~(O) d~ 
, (15) 
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and 

AS(s,  x, w) = /("csJ)(cro(s)) -~0 f~O¢ ~<~)/~s(~),(~) t A0( 0(s))l  

where cp = X/'(A + 2#)/p for P-wave and cs -- ~ for S-wave are the 
phase velocities and d is the Jacobian of the mapping via rays. The first 
term is the geometrical spreading due to wavefront expansion and the initial 
value A0(¢0(s)) turns out to be 1/4rr by matching the high-frequency solution 
and the complete solution for an homogeneous medium. Of course, we may 
deduce the expression for a non-attenuating medium by letting A and u to be 
zero. The attenuation effect results in an exponential decay of the ampli tude 
along the rays. We define 

a P (s ,x)  = e -~ fio((~ <A(¢)+2,(~))/2~p(~)(a(~)+2,(~)) d~, (17) 

and 
-~ f<~ ,(¢)/2c<~),(¢) 6¢ = (18)  

These terms can be interpreted as the imaginary part of a complex traveltime 
T +  ic~. Whatever  is the selected notation, it represents the at tenuation along 
the raypath between source at s and diffracting-point at x. 

The effects of attenuation on seismograms are analysed in Figure 1 a) in a 
medium with constant velocity field (cp = 2000 m s -1) and constant quality 
factor (Qp = 10). The amplitude, traveltime and attenuation are obtained in 
Figure 2 using the algorithm presented by Lambar6 et a1.(1996). The atten- 
uated seismogram are superimposed with non-at tenuated seismogram. The 
at tenuation effects decrease when the quality factor increases. In Figure 1 b) 
we have considered a medium with constant Qp = 100. 

1.3 B o r n  a p p r o x i m a t i o n  

Following the same procedure proposed by Beylkia and Burridge (1990) for 
acoustic and elastic media, we present an extension for an anelastic isotropic 
3D medium. We assume that the medium can be separated in two parts: a 
smooth reference medium for which the Green function may be computed by 
ray theory and an unknown weak local perturbat ion of medium parameters.  
For developing wave equation theory perturbation,  we choose the density 
p(x) and the relaxations functions for P and S waves ~(x) and ]2(x), because 
it makes expressions simpler. 

The parameters of the global medium can be written 

p(x) = p0(x) + 6p(x) 

~(x) = i0(x)  + ~ ( x )  

~(x) = ~0(~) + ~P(~) (19) 
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F ig .  1. Seismograms obtained from the traveltime, amplitude and at tenuat ion given 
by ray tracing, in Figure 2. On the top anelastic-seismograms (Qp -- 10, cp = 2000 
m s -1) are compared with elastic seismograms (cp = 2000 m s - l ) .  On the bo t tom 
anelastic-seismograms (Qp : 100, cp ~- 200 m s -1) are compared with elastic 
seismograms (cp = 2000 m s - l ) .  The source signature is s ( t )=  sinc(t). The receivers 
are located along a vertical line; the first receiver is in x = 700 m from the origin 
and at z = 10 m and the receivers sampling step is 10 m. 

where  5p, 5)~ and  5/~ are  co r respond ing  p e r t u r b a t i o n s  of  the  dens i t y  and  of  
the  r e l axa t i on  funct ions .  The  p e r t u r b a t i o n  area,  as for the  reference m e d i u m ,  
has  an a t t e n u a t i o n  which is complex .  Then  f rom (6) we have 

i ( x )  = A0(x) + 5A(x) + i (A0(×) + 5A(x) ) ,  

~ (x )  = ~ 0 ( x ) +  ~ ( x ) +  i ( . 0 ( x ) +  ~ . ( x ) ) ,  (20) 

in which we d i s t ingu i sh  between the  e las t ic  p a r t  and  the p a r t  r e l a t ed  to  
d i s s ipa t ion .  

The  c o m p l e t e  Green  funct ion G will  be sp l i t  in to  the  known Green  func- 
t ion  Go and  the  unknown p e r t u r b a t i o n  5 G  due  to the  s ca t t e r i ng  f rom the  
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Fig. 2. Ray field and maps for time and attenuation by algorithm of Lambard et 
al. (1996). The source is at origin. 

perturbations of model parameters. The local equation at r = (rl, r2, r3) 
p ~ 2 G ( s , r , z )  + V-(~(r)V)G(s,r,z) = - $ ( r -  s), (21) 

for an arbitrary point x of the medium, can be expanded into the following 
form 

P0 (x) ~2~iG(s, x, ~) + V .  (30 (x)V)~G(s, x, a~) = 

- (~2~p(x)G(s,x,~)  + V - ( @ ( x ) V ) G ( s , x , ~ ) ) .  (22) 

The solution of equation (22) can be written as a convolution over the domain 
A4 of diffracting points of the Green function G0(x , r ,~ ) ,  solution of the 
equation (21) for the reference medium, with the source term c025pG + V • 
(@V)G which yields 

£ 
5G(s, r, w) = .]A~ G0(x, r, w)[Sp(x)w2G(s, x, a~) 

+ v .  (@(~)V)C(s, ~, ~)]d~. (23) 

The first-order Born approximation is obtained by replacing the total field G 
by the incident field Go in the integral (23), leading to the following linear 
operator between @, ~i~ and ~G 
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f 
5G(s, r, w) = ./** Go(x, r, w)[gp(x)w2Go(s, a2) x~ 

+ v .  (@(x)V)G0(~, x, w)]dx. (24) 

Integrating the second term on the right hand by parts and noticing that 
the boundary term vanishes since perturbations 6p and at) are zero on the 
boundary 0Ad of the domain AJ, we obtain the linear relation 

5G(s, r, w) = . /~ [Go(x, r, w)Go(s, x, w)@(x)w 2 

- (5~(x)V)Go(x,r,w).  VGo(s,x,w)]dx. (25) 

Let us remark that the Born approximation requires the scattering zone to 
have a weak amplitude and a small extension (Wu (1989)). For an isotropic 
medium, the leading singular term of the Green functions in equation (25) 
can be written in the form 

G0(s, x, w) = GoP(s, x, w) + GoS(s, x, w) (26) 

and 

where 

G0(x,r,w) = GoP(x,r,w) + GoS(x,r,w) 

Go p (s, x, w) = AP(s, x)ei~TP(~'")e-~O(~'x), 

(27) 

(2s) 

GoS(S, x, ~) = AS(s, x)ei~TS(~'X)e - ~ J ( s ' ' ) ,  (29) 

GP(x, r, ~) = A0P(x, r)ei~TQx'r)e-~aP(x'r), (30) 

G0S(x, r, w) = AoS(X, r)eiWTS(~'r)e -~as(x#). (31) 

The leading singular terms of the spatial derivatives of the Green functions 
are as follows 

VGg (s, x, w) --- ~(VT ~ (s, x) + ~W~(s, x))Ag (s, x)~<(~'x)~ -~ (s '~ ) ,  
(32) 

VGoS (s, x, w) =/~(VTS(s,  x) + iWS(s,  x))Ao~ (s, x ) e ~ ( s ' x ) e  -~J(~'x), 
(33) 

VG0P(x, r, w) = iw(UTP(x, r) + ivaP(x ,  r))AP(x, r)ei~Te(*,r)c-~aP(x,*'), 
(34) 

V G o 8 (x, r, w) = iw (VT s (x, r) + i r a  s (x, r))A0 s (x, r) e i~T s (x,r)e-~ c~s (x,r). 
(35) 
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The scattered field might be split into scattering modes, thanks to the asymp- 
totic hypothesis We have the following scattering modes and therefore the 
scattered field are 

5G(s, r, w) = 5G PP (s, r, w ) +  5G ps  (s, r, w ) +  5GSP(s, r, ~ ) +  5GSS(s, r, w). 
(36) 

The SS notation includes 5G sVsV and 5G SHSH related to two independent 
polarizations of S wave, i.e. S V S V  and S H S H  modes of propagation. We 
define the total effect of the propagation with the matrix 

E =  ( E  PP E PS EsP  E s v s v  E S H S H ) ,  

E PP = ~2AgP(s ,  x )AgP(x ,  r)eiw(TPP(s,x)+TPP(x,r))e-W(aPP(s,x)+aPP(x,r)), 

E ps  = w 2 A ps  (s, x ) h  ps (x, r)e i~(TPs (s'x)+TPS (x'r))e-~(~Ps (~'x)+aPs (x,r)), 

E SP = cv2AoSP(s, x)AoSP(x, r)eiw(TSP(s,x)+TSP(x,r))e-~(~SP(s,x)+aSP(x,r)), 

U S _-- w2h0S(s, x)AoS(X, r)eiw(TS(s,x)+TS(x,r))e-w(as(s,x)+cxZ(x'r)) 

In the last expression, S is respectively for the S V S V  and S H S H  modes of 
propagation. 

Using asymptotic Green functions given by equation (12) and, by prop- 
erties of the perturbation area, we found the most singular 1 term of the 
scattered integral 

5G(s , r ,w)  = / ~  n ( s , x , r , ~ )  W ( s , x , r )  U f ( x )  dx. (37) 

The diagonal matrix 

is deduced from the specific rheology of the medium (the imaginary terms 
are related to complex relaxation functions we have assumed). The Ray- 
Born scattering matrix W can be written under a mode-to-mode conversion 
of waves 

W PP W PS W SP W SVSV w S H S H  

, , p  , ,p . ,p 
o o 

\ wy" W; ~ w~ ~ w U ~  WJ,,~- / 
and f(x) = (~(x) ,  ~ (x ) ,  ~p(x), ~A(x), ~ (x ) )  is the perturbation parameters 
vector. The complex terms of this matrix are described in the Appendix. In 

t We shall consider the most singular term of the integral representations of the 
single scattered fields. Following the same procedure of Beylkin and Burridge 
(1990), we used the most singular part of the Green's functions and its derivatives 
(in the high frequency approximation). 
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••lmaginary axis 

r ~ [ V a ~  Diffractor 

Z; / a~P' 
VT D 

Fig. 3. Diffraction geometry where the source and the receiver are connected 
through a digracting point with specific hitting angles of rays which control the 
recovered amplitude of the anomaly. The vector VT is the gradient of the two-way 
traveltime and is the sum of the local traveltime of these two rays. The vector 
Va,  related to dissipation, is the sum of the vector in the direction of maximal 
spatial attenuation between the source and the diffracting point and the vector in 
the direction of maximum spatial attenuation between the diffracting point and the 
receiver. The slowness vector p is the sum of VT and Va. 

the equation (37), we obtained integral equations relating the singly scattered 
field l i n e a r l y  to the unknown parameters .  

The physical interpretation of equation (37) can be described in the fol- 
lowing way. A diffracting point x reacts at the wave arriving from the source 
and emits a diffracted wave. This diffracted field recorded at the receiver 
(Figure 3) is proportional  to the ampli tude of per turbat ions of the medium 
parameters  through the equation (37). 

The scattering matr ix,  for a given position x0 of the scattering point 
depends only on the geometry between incident and scattered ray, as shown 
in Figure 3. The element VT(s ,  x0, r) is in the direction of phase propagat ion,  
i.e., it is perpendicular to the planes (or surfaces) of constant phase T = 
const; Vc~(s, x0, r) is in the direction of m a x i m u m  spatial at tenuation,  i.e., 
it is perpendicular to the planes (or surfaces) of constant  ampl i tude  (Hearn 
and Krebes (1990b)). For an at tenuat ing medium the total  complex slowness 
vector has the form p(s ,  x0, r) = VT(s ,  x0, r ) + i V a ( s ,  x0, r).  The initial value 
of the at tenuation angle can be determined by Fermat ' s  principle (Hearn and 
Krebes (1990a)). 

The scattering mat r ix  W is analysed for an anelastic med ium having 
QOs = 20, cos = 800 m s - t ,  Q0p = 2.25 x QOs, cop = x/~cos; 01 = 0.52 
rad, 71 = 1.05, 3'2 = 0.52 rad. The elements of the mat r ix  W are plot ted in 
Figure 4 and Figure 5. 
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Anelastic radiation patterns 

Real Imaginary 

0 =0" 0 =0 ° 

W[P 90° ( )  2 7 0 " 9 0 °  i - 2 7 0 °  

"', ........ .' \....,(_ i 
" mult=lO0 

..... J80::' 180 ° 

0 =0" 0 =0 <> 
. . . . . . . . . .  , ( ) l  

W~ P 90 ° ( 270 ° 90" . . /  270 ° (()-, 
"\'-. I " ~ /-  

........... I mult=50 
180 ° 180" 

0 =0" 0 =0" 

' 270" - -  *" ""  W~ s 90 ° 12 9 , 90 ° '~ 270" 
C a  

........... mult=150 
180" 180" 

F ig .  4. The radiation pat terns  for 5A and 5p are presented for each mode of wave 
propagation. On the left of the panel the real part  of the scattering matr ix  are 
compared with imaginary part  for each per turbat ion parameters.  On the right, a 
zoom of the imaginary parts  are represented. The real part  of W PP is p lot ted a), 
and the imaginary part  of W P P  using a multiplier factor of 100; the real par t  of 
W P f  is displayed b), and the imaginary par t  of W P P  using a multiplier factor of 
50; c) on the left the real part  of W P s  is plotted, on the right the imaginary par t  
of W P s  using a multiplier factor of 150. 

We represent  in F igure  6 the  r a d i a t i o n  p a t t e r n s  for the  pure  e las t ic  p a r a m -  
eters  inversion;  the  same  resul ts  for the  e las t ic  case are  p resen ted  by  Forgues  
(1996). 

T h e  a t t e n u a t i o n  does not  change  the  sca t t e r ing  d i a g r a m s  of  the  elas- 
t ic p e r t u r b a t i o n  pa rame te r s .  T h e  real  pa r t  of  the  r a d i a t i o n - a n e l a s t i c - p a t t e r n  
of  ~A, p lo t t ed  in green color in F igure  4 a) on the  top- lef t ,  is i den t i ca l  to  
r a d i a t i o n - e l a s t i c - p a t t e r n  p lo t t ed  in F igure  6 a). T h e  real  p a r t  of  the  r a d i a t i o n -  
a n e l a s t i c - p a t t e r n s  of  ~#, in red color (F igure  4 and  F igure  5) are  iden t i ca l  to  
pu re  e l a s t i c -pa t t e rn s  of ~i# (F igure  6 in red color) .  T h e  i m a g i n a r y  p a r t s  rep-  
resen ted  in F igure  4 and  in F igure  5 are  more  sma l l  t h a t  the  c o r r e s p o n d e n t  
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A n e l a s t i c  r a d i a t i o n  p a t t e r n s  

Real Imaginary 

0 =0 ° 0 =0" 
/ \ 

wsP 90" ¢ O 270 ° 90 . . . . . .  270" 

• , , J ~  "\ /" -\,/, 

............ I mult=150 
180" 180" 

0 =0 ° 0 =0" 

wsv~v 90 ° 270" 90" ...... 270 ° 

I "J/~'~"- mult=50 
180 ° 180 ° 

0 =0" 0 =0" 
. . . .  

W sHsH 90' 27ff' 90 ° 270" 

• 
\ 

" "/~'* ~"/ mult=20 
180;; 180" 

Fig.  5. a) on the left the real part of WS," is plotted, on the right the imaginary 
part of W sP using a multiplier factor of 150; b) on the left the real part of WS, v sv  
is plotted, on the right the imaginary part of Ws, v sv  using a multiplier factor of 
50; c) on the left the real part of W~ ~su  is plotted, on the right the imaginary 
part of Ws, Hsu using a multiplier factor of 20. 

real parts .  For the representa t ion  we use a specific mul t ip l i e r  factor.  Th i s  im- 
po r t an t  result  shows tha t  it is possible to extract  more  in fo rmat ions  by the 
complete  se ismogram when the a t t enua t i on  effects are taken into account  and  
the other  pa ramete r  are not  effected. We remark  a s imi lar  behav iour  between 
the imag ina ry  d iagrams  of 5A for P P  mode of p ropaga t ion  and the i m a g i n a r y  

par t  of 51z for S H S H  mode  of propagat ion .  The  same behaviour  is ev ident  
for the i m a g i n a r y  par ts  for P S  and S P  mode of propaga t ion .  
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Elastic radiation patterns 

PP 

90" 

0=0 ° PS 0--0° 

270 ° 90 ° t ~  

/ 

180 i) 180 ° 

%% 

270 o 

2 
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0=0 ° SV SV 0=0 ° 
. .  . . . . . . .  - . . . . . .  . 

270 ° 90 ° 

' \  . / 
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270" 
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Types of perturbations: 
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) 1 _  sbe.r modulus 
density (Sp) / 

180 ° 

Fig. 6. The radiation patterns for elastic parameters 5A,Sp and 5p are plotted, a) 
The elements of the scattering matrix associated to 5)~ in green, to 5p in red and 
to 5p in blue for PP diffraction are displayed; b) the radiation pattern related to 
5p in red and 6p in blue for PS diffraction are represented; c) the diagrams for 5/~ 
and 5p for SP diffraction are shown; d) the elements associated to 5p and 5p for 
SV SV diffraction are plotted; c) the diagrams for 5p and 5/~ are shown for SH SH 
mode of wave propagation. 

2 A s y m p t o t i c  i n v e r s i o n  t h e o r y  

2.1 G e n e r a l  a p p r o a c h  to  i n v e r s i o n  

Let us define both model and da ta  Spaces with associated metrics and opera- 
tors between these two spaces. The model space Ad is the space of all possible 
per turbat ions  of the density p(x), the complex relaxation functions A(x) and 
/~(x) in which we distinguish between the elastic parts  A(x) and #(x)  and 
the factors related to at tenuation A(x) and u(x).  It  will be denoted by the 
vector f = (SA, 5#, 5p, 5A, 5v) depending on the position x. 
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The da ta  space "D consists of the entire set of per turbed seismograms ~G 
which will be denoted u recorded at the free surface. The da ta  acquisition 
system depends on source and receiver positions at s and at r, respectively, 
and on the angular frequency w. 

We may  write the linear forward problem (37) in the compact  opera tor  
form 

uz) = ~; f ~ ,  (38) 

where G : M --+ ~D is the integral operator  on the right hand side of (37). 

The solution of the linearized inverse problem consists in finding the inverse 
operator  of G applied on seismograms u in order to recover the model f .  

2.2 I n v e r s i o n  b y  t h e  l e a s t - s q u a r e s  m e t h o d  

The inverse solution of the equation (37) is obtained through the opt imiza-  
tion method for which a misfit function between observed and calculated 
seismograms has to be minimized. We adopt  the least-squares norm £2 of 
the difference between observed and predicted seismograms. 

Following the same approach as Jin et a1.(1991), we introduce the follow- 
ing definition of the inner product in the da ta  space 

(u r v)D = £ dwu] (s,r,w)Q]k(s, xo, r,w) 
s,r,l 

× Qkt(s, xo, r ,w)vt (s ,  r ,w) (39) 

where u and v are two sets of seismograms and ~ denotes the complex con- 
jugate.  The index l from 1 to 5 denotes the scattering modes PP, PS, SP, 
SVSV, SHSH, l = 1 indicates the PP mode, l = 2 the PS mode, etc.. 
The sum in the equation (39) extends over the da ta  space of seismograms. 
The mat r ix  Q is the covariance ma t r ix  of the stochastic inversion (Tarantola  
(1986)) and will be designed such that  the first i teration of the inversion 
provides an approximate  inverse solution. As proposed by Jin et a1.(1991), 
at the point x0 of the diffracted domain 3d when we want to recover model  
values, the mat r ix  Q has the form 

Q =  0 0 
0 0 
0 0 

Q o oo o o 
0 Q.o~o 0 0 

Qpo;o 0 
0 QAoAo 
0 0 Q~o.o / 

(40) 

where the terms are defined with ray quantities by 
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Qio~o(S, x0, r, w) = 

Q~AoAo (s, x0, r, w) = 

I VTt(s, x0, r) + iVa ' (s ,  xo,r)  ] 

2~x /~who ,  (s, xo, r)e - 2~'(~,~°'~,~) ' 

I VTI (s, xo, r) + iVa  t (s, xo, r) i 

2~r ~ i wAo, (s, x0, r)e -2u'(s . . . . . . .  ) '  
(41) 

where [ vTI (S, X0, r) + iVa' (S, x0, r) I is the complex module of the slowness 
vector; Qt l l i t 

~ ~o~o QAoAo #o#o QPoPo ~AoAo and 
We must underline that the preconditioning associated to the matrix Q 

varies with the current position x0 of the diffracted domain. The particular 
form of the covariance matrix Q corrects for geometrical spreading, for obliq- 
uities of rays, as well as for the spectral contents of the Green function. We 
remark that  l z Q-o-o are QAoAo and designed to correct also for the complex 
dependence of the medium rheology. 

For the inverse problem, we also need a definition of the inner product 
between any two functions f(x) and l(x) in the model space 3A: 

(f(x) [ l(x))~ = / i  ~" f~(x)lk(x)dx, 
k 

(42) 

where k stands for a discrete summation over components in the model space 
while a continuous integration is performed over the diffracted domain. From 
the equation (39), we obtain the £2 misfit function 

S(f) = l / 2 ( u - ~ f l u - ~ f } v  (43) 

where u = 5G °bs are observed data and ~ f are synthetic seismograms es- 
t imated through the equation (37). With these definitions, we formulate the 
inversion problem such as 

find f which minimizes S(f). (44) 

This formulation leads to the classical "system" of normal equations written 
a s  

Gt~ f = ~ t u  (45) 

where Gt is the adjoint function of the Green function G. This adjoint operator 
is defined by the classical relationship 

<u I G f>v = <~tu If>M, (46) 

which enables us to construct the kernel/~ of this adjoint operator G t through 
the integral definition 

= - Z / .  d G(s, x, r, r, (47) 
a , r , /  
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where 

< , ( s ,  x , , . , <  = % ( x ) e ; j ( s ,  xo, r,~)eq~(~, ~o, ~, ~)~'~, 

× A0(s ,x , r )  w2e-i°°T'(s'x'r)e -~a'(s  ..... ). (48) 

The matrix W t and K t are respectively the transposed of W and K. 
This definition of operators is the last definition needed for the gradient 

definition and the Hessian reconstruction associated to the linear system (45). 

3 Gradient  es t imat ion  and Hessian approx imat ion  

Following the same approach proposed by Jin et a1.(1991), we found that the 
formal inverse at the diffracting point x0 can be written 

[ ~ ( x o ) l  
| a , (xo )  | 

r(xo) = /(~fl(xo) I = H - I ( x ° '  x )7° (x ) '  (49) 
/ a A ( x o ) /  
[a~(xo) 1 

with an explicit expresmon 
image at the point x0 

of the gradient at the point x when one wants the 

[ ~ o  (x) 7 
7o0 (x) | I Ao, (s, x, r) 

: 

~°o(X)/ , ,  
-y° ° (x) J 

× I VT*(s ,x0, r )  + iV~l (s ,x0 , r )  [2 e-iwT'(s . . . .  )ewal(s,x,r) 

× t~l, × w,~ × u,(~ ,r ,~) ,  

w h e r e K t =  diag ( l , l ,  1, - i ,  - i ) .  The 

is the formal inverse of 

(50) 

operator H -1 ill the equation (49) 

02 S 
0 f2 ,  (51) 

where the function S is the misfit function over frequencies. The inverse of 
the Hessian cannot be calculated analytically. Observing that the diagonal 
terms are dominant, we obtain an Hessian approximated by the following 
relationship 

i-I(x, x0) - M~  Wt × w .  a(x - ,,0) (52) 

where, for a discrete distribution of sources and receivers, Jin et al. (1991) and 
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Lambard et a1.(1992) found that equation (51) must be normalized by Msr - -  

0.5. N~/Ar, where N, is the number of sources and Ar is the interval between 
receivers when they are regularly spaced. Because the Hessian expression in 
equation (52) is only an approximation, we proceed iterativaly to obtain the 
best solution using a quasi-Newtonian approach. 

4 P e r t i n e n t  c h o i c e  o f  a d a p t e d  p a r a m e t e r s  f o r  t h e  

m o d e l  d e s c r i p t i o n  

For a good description of the medium rheology, it is possible to recover the 
global velocities cp and cs as well as the global quality factors Qp Qs ac- 
cording to 

/ es(xo) / / co~(xo) + &s(xo) 
f~(xo) = |Qp(xo) |  = ]Qo.(xo)+aQp(xo) 

LQs(×o)J L Qo,~(xo) + aQs(xo) 

(5a) 

where 

cop(,:o) = x/(~o(xo) + 2,o(xo))/po(xo) 

cos(xo) = ,/,o(xo)/po(xo) 
Qop(xo) = (Ao(xo) + 2~o(Xo))/(Ao(×o) + ~.o(×o)) 
Q0s (xo) = tto(Xo)/Uo(xo) (54) 

are the background quantities and 5c and ($Q indicate the (first order) per- 
turbations of the velocities and the quality factors following the relationship: 

1 ~/ po(xo) SX(xo) + 25p(Xo) 
acp(xo) = 2 V(~°(x°) + 2t, o(xo)) po(xo) + 

(~(xo) + 2~o(Xo))ap(xo)" 
p~o(Xo) 

[a.(xo) .o(xo)ap(xo) 1 

&(xo)  + 2a~(xo) (~o(xo) + 2m(xo))(aA(xo) + 2a~,(xo)) 
SQp(xo) = Ao(xo) + 2~o(~o) - (Ao(xo) + 2~o(xo)) ~ ' 

aQ~(x0)-  a,(xo) ~o(~o)a-(xo) (55) 
.o(xo) .o~(xo) ' 



351 

recovered in each point xo of the diffracted domain 54. It is an equivalent 
way to work with different parametrisations because it is possible to change 
the parameters by simple linear transformation 

f = M f 2 ,  (56) 

where the matr ix  M is independent on the diffraction angle 0 (see the Ap- 
pendix). This matr ix  M for the transformation (55) turns out to be well 
conditioned for usual values of the model parameters.  

Conclusion 

We have developed a fast inversion technique based on both the Born approx- 
imation and the asymptotic Green functions for recovering both elastic and 
at tenuation parameters of a medium where waves are recorded along the free 
surface. We solve the linearized inverse scattering problem for perturbations 
in different parameters treating separately the propagation modes. We haved 
a closed form of diffraction kernels under the assumptions of asymptotic  so- 
lutions. We have derived an anelastic numerical algorithm in the frequency 
domain in contrast to other approaches which have developed elastic algo- 
ri thms in the time domain. The separation of the propagation and at tenuation 
parameters is possible from wave fitting. Extension to real da ta  is the purpose 
of future work. 

Acknowledgements 

This work has been partly founded by European Commission and Norveg- 
ian Research Council in the framework of the JOULE II program (Project 

"Reservoir-oriented Delineation technology"). We are grateful to G. Lam- 
bar6 for providing the algorithm for ray tracing and S. Operto for valuable 
comments. We thank U. Bruzzo and G. Caviglia of the Departement of Math- 
ematics of the University of Genova (Italy) for interesting discussions. Pub- 
lication number 103 of G6osciences-Azur. 

References 

Aki K., Richards P. (1980): Quantitative seismology: Theory and methods. (W. H. 
Freeman and Co, San Francisco, CA). 

Beydoun W., and Mendes M. (1989): Elastic ray-born 12 migration~inversion. Geo- 
phys. J. Int., 97, 151-160. 

Beylkin G., and Burridge R. (1990): Linearized inverse scattering problems in 
acoustics and elasticit. Wave Motion, 12, 15-52. 

Bleistein N. (1987): On the imaging of reflectors in the earth. Geophysics, 52, 
931-942. 



352 

Caviglia G., Morro A., and Pagani E. (1990): Inhomogeneous waves in viscoelastic 
media. Wave Motion, 12, 143-159. 

Cerven3~ V., and Hron F. (1980): The ray series method and dynamic ray tracing 
system for three dimensional inhomogeneous media. Bull., Seis. Soc. Am., 70, 47. 

Crase E., Pica A., Noble M., McDonald J., and Tarantola A. (1990): Robust elastic 
nonlinear waveform inversion: Application to real data. Geophysics, 55,527-538. 

Eringen A. (1980): Mechanics of continua (Robert E. Krieger Publishing Com- 
pany). 

Ferry J. (1961): Viscoelastic properties of polymers (John Wiley and Sons, Inc., 
New York). 

Forgues E. (1996): Inversion lingarisge multiparam~tres via la thgorie des rais 
(Th~se de Doctorat de l'Universi~ de Paris VII., Paris). 

Hatzidimitriou P. (1995): S-wave attenuation in the crust in northern greece. Bull., 
Seis. Soc. Am., 85, 1381-1387. 

Hearn D., and Krebes E. (1990a): Complex rays applied to wave propagation in a 
viscoelastic medium. Pageoph, 132,401-415. 

- - - - -  (1990b): On computing ray-synthetic seismograms for anelastic media using 
complex rays. Geophysics, 55, 422 432. 

Jin S., Madariaga R., Virieux J., and Larnbar4 G. (1991): Two-dimensionalasymp- 
totic iterative elastic inversion. Geophys. J. Int., 108, 1-14. 

Kjartansson E. (1979): Constant q-wave propagation and attenuation. J. Geophys. 
Res., 84, 4737-4748. 

Lambard G., Virieux J., Jin S., and Madariaga R. (1992): Iterative asymptotic 
inversion in the acoustic approximation. Geophysics, 57, 1138-1154. 

Lambard G., Lucio, P. and Hanyga A. (1996): Two-dimensional multivalued travel- 
time and amplitude maps by uniform sampling of ray fiel. Geophys. J. Int., 125, 
584-598. 

Mavko G., and Nur M. (1978): Wave attenuation in partially satured rocks. Geo- 
physics, 44, 161-178. 

O'Connel R., and Budiansky B. (1978): Measures of dissipation in viscoelastic 
media. Geophys. Res. Lett., 5, 5-8. 

Ribodetti A., Virieux 3., and Durand S. (1995): Asymptot ic  theoryfor viscoacoustic 
seismic imaging. 65th Ann. Internat. Mtg., ,Soc. Expl. Geophys., 631-634. 

Tarantola A. (1986): A strategy for nonlinear inversion of seismic reflection data. 
Geophysics, 51, 1893-1903. 

Tarantola A. (1988): Theoretical background for  the inversion of seismic wave forms 
including elasticity and attenuation. Pageoph, 128, 365-399. 

Virieux J., Flores-Luna C., and Gibert D. (1994): Asymptot ic  theory for diffusive 
electromagnetic imaging. Geophys. J. Int., 119, 857-868. 

White 3. (1965): Seismic waves: Radiation, transmission and attenuation 
(McGraw-Hill Book Co., Inc., New York). 

Wu R. (1989): The perturbation method in elastic wave scattering. Pageoph, 131, 
605-637. 

A p p e n d i x  : The  R a y - B o r n  scattering matrix 

We define 01 tO be the angle at diffacting point at x that  the slowness vector 
p~(s,x)  makes with the vertical (parallel to z direction); 02 the angle at 
diffacting point at x that  the slowness vector p r (x ,  r) makes with the vertical; 
71 the angle that  the attenuation vector c~(s, x) makes with the vertical and 
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72 the angle that  the attenuation vector a~(x,r)  makes with the vertical. 
Then we define the total angles 

0 = 01 + 02, (57) 

and 
"7 = 71 -~- 72. ( 5 8 )  

Then we can write the complex components of the Ray-Born scattering ma- 
trix in term of these angles 

1 ( cos<" (cos(0f" - 7~ P) w~P = cL_~ 4Qg~ +g \  ~ 
2 op P ( op P COS ")/PP 

w y "  = c~p cos . c ° s  4 Q 2 ~  + 

, _ _ _  , 

~, 2Qop + 

_ 2 sin 0 PS ( COS 0 PS COS 7 PS 
co,Cos . 4Qo~Qos + 

+ikf c°s(OPS - + c°s(°PS - 7PS) ) ' 

W f f P  _ 2 s i n  0 SP ( c o s  0 SP c o s  .,[sP 
copco~ . 4QopQos + 

)) + i (  sty1 -75 ) cos (0~-Tf  P) 
\ ~ j ~  + 2Q0~ ' 

cos(OfP - ~$P) + ) )  

w SVSV = 1 ( ' C2os cos 0 ss cos 0 ss cos4Q~s~/ss + 

~ ) eos(O~ ~ - ~ )  
+i - - - -  + + 

_ ( c @ S i n O S S ( s i n O S S  sin~SS 
. 4Q2s 

[ s i n ( O S S - 7  s s )  sin(0 ss  - 7~'s)'~ "~ 

~, ~Qos + 2Qos ) )  
i ( cos ~s's 

= c~- ~, cos 0 s s  
os 4Q0~s + 

+ i \  2Qos 2Qos ' 

W PP = c o s O  PP, W f s  = - s i n O  Ps,  W s P  = s i n O  sP, W s v s V  = cosO ss ,  
14• s v s v  = cosO s s ,  W f u s "  = 1;WA PP = W~ Pc, Wf e = Wf P, Wy s = 
W y  s, W~ sP = W sP ,  W s v s V  = W , , W s s s "  = W s H s u ,  where cop and 
cos are the bulk and shear velocities in the propagation medium and Q0p and 
Qos the quality factors. We remark that  when Qp --+ oo and Qs --+ oz, i.e. 
in the elastic case, we find the classical elastic Ray-Born scattering matrix 
(Forgues (1996)). 
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Abs t rac t .  The aim of an inverse scattering electromagnetism problem is to deter- 
mine physical properties of an object or configuration, from the known scattered 
near-fields or far fields. 
In this paper, the involved parameters (permittivity and conductivity profile, impedance 
operator) should be reconstructed from the knowledge of time domain datas (grat- 
ing mode, reflection coefficient, far-field ...). 
The problem is treated as an optimal control problem where the norm of the differ- 
ence between measured and computed data is minimized, constrained to the state 
equation governing the system. 
The original constrained optimisation problem is reduced to the stationnary point 
evaluation of an augmented functional, which is obtained by the method of "La- 
grangian multipliers". 
Profile reconstruction is carried out by a descent method (Quasi-Newton method). 
At each iteration, the state and adjoint state are solved by a Finite Difference Time 
Domain (FDTD) method. New estimates for the permittivity are obtained by a one 
dimensional search in a suitable descent direction. 

1 I n t r o d u c t i o n  

The problem of a lossless one-dimensional slab in time domain, was first theo- 
retically treated by Kay, Sabatier, Gelfand and Levitan (1955). Tl~ey reduced 
it to an equivalent, uniquely solvable, quantum-mechanical scattering prob- 
lem with an integro-differential approach. 
Concerning inverse problems for the wave equations, we refer to the geophys- 
ical litterature where different approaches and models have been studied ex- 
tensively. The earth is modelled as a stratified elastic medium whose density 
and shear modulus vary as a function of depth. Under certain assumptions, 
available theoretical results about uniqueness, global and local stability esti- 
mates are obtained by Symes. 
For electromagnetic medium, one has to mention the integral relation meth- 
ods developped by Tabbara (1979), Lesselier (1982) and Tijhuis (1981) using 
Born approximation. Some other authors (Kristensson and a1.,1986) have ex- 
amined the numerical practicability of an integro-differential approach, and, 
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a more accessible procedure for arriving at the scattering kernels by using 
invariant embedding equations. 
In higher dimensions, some interesting papers (see Colton, Kress (1993), and 
Kirsch (1995)) proved uniqueness and stability results in frequential domain, 
the time domain approach being not so investigated. 
The approach used in this work is analogous to the gradient method devel- 
opped by Bamberger, Chavent and Lailly (1977) in identification problems 
for geophysical explorations. 

1.1 M a t h e m a t i c a l  i n t r o d u c t i o n  to  t h e  i nv e r se  p r o b l e m  

The admissible set of parameters will be denoted Cadm. Most of the elec- 
tromagnetic characterization problems are usually considered to be "open 
problems" where the domain of the computed field is ideally unbounded.  
Clearly, no computer can store an unlimited amount  of datas, and therefore 
the field computation zone must be limited in size. 
The computation zone must be large enough to enclose the s tructure of inter- 
est (the slab), and a suitable boundary condition (Absorbing or Impedance 
Boundary Condition) on the computation zone board must be used to simu- 
late the extension to infinity. 
For theoretical results, we refer to Collino (1992),and Joly (1987) papers. In 
the following part  of the paper, all the variables will be splitted into two 
components : the one pertaining to the volume object,  the other relative to 
the boundary object. We define the parameter  p or control variable 

and 

U =  Ub 

which is here a component of the electromagnetic field. 
We note y = Uobs the measurement data, M the Maxwell differential operator  
(in the volume) , B the Boundary differential operator,  Sinc the incident 
excitation (plane wave). 
Denote by A : p ~. ; y = A ( p )  the application (linear or non linear forward 
map ) from the space of solutions X into the space of datas Y. One also 
refers to the data  y as the image and to the solution p as the object or profile 
function. 
The inverse problem consists in solving the operator  equation y = A ( p ) ,  
from the knowIedge of y . According to the usual definition, inverse problem 
is well-posed if the three following requirements are fullfilled : 
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- for every y C Y, a solution p exists. 

- the application A is one to one (uniqueness when existence is assumed) 

- When p exists then p = A - l y  and A -1 is a bounded operator  (stability 
of the solutions when observations datas vary) 

Those properties are often obtained locally (by linearization) : Therefore, 
Newton methods can be employed with guarantees about  convergence. 

1 . 2  L e a s t  s q u a r e  s o l u t i o n s  

A well-kown way to find p uses a minimization procedure (non linear least 
square inversion, (see Tarantola, 1984). 

I n t r o d u c t i o n  o f  v a r i a b l e s  Denote by Res(U) the residual (difference 
between measurement datas Uobs and the computed value U ) : 

nes(U) = ( ~ - ~ F ( U -  Uob,)(Scopt(k)) 

where N is the number of measurement points and ~capt(k) is the abscissa 
of the point number k. F = Id, for near field measurement and F is the near 
field-far field mapping if far field measurements are employed. Introducing a 
space-time scalar product  on an adapted Hilbert Space, the cost function is 
wri t ter  

1 
j(p) = J(U(p)) = ~ < Res(U), Res(U) > 

By the optimal control theory, finding Popt as 

J(Popt) ~- min j (p)  Vp ~ Cadm 

under the state equation constraint 

{ M(p~)U~=Si~¢(5sinc, t) in the volume 
B(pb)Ub=O on the boundary 

is equivalent to search the saddle point of an associated Lagrangian defined 
below (see Lions, 1968)). 

I n t r o d u c t i o n  o f  t h e  a s s o c i a t e d  L a g r a n g i a n  Let Q be a costate variable 
(dual variable). Then the Lagrangian, function of three variables (p, U, Q) is 

L(p, U, Q) = J(U)+ < Qi, M(pi)Ui - Si~c > 

+ < QD, B(pb)Ub > 
1 
2 < R 8(v),n s(u) > 

+ < Qi,  M ( p i ) U i  - S nc > 

+ < Qb, B(pb)Ub > 
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Remark that p and U are completely independant here, the constraint being 
added via the second term of Lagrangian. 
Searching the saddle point of the Lagrangian is finding (Popt, Uopt, U*pt) which 
verifies 

L(popt, Uopt, Q) <_ L(popt, Uopt, Uopt) <_ L(p, U, V*pt ) 
Vp, U,Q e Caam 

If (Popt, Uopt, U*pt) is saddle point of the Lagrangian, then Popt is the optimal 
control searched. 

Def in i t ion  of  the  costate  equa t ion  Let U* = (U* / the corresponding u; 
k / 

adjoint state to U. U* verifies the first Euler equation 

On(p, U, U*) _ o 
OU 

then the adjoint (or dual) equations are performed by 

M*(pi)U*=Res(U) in the volume 
B*(pb)U~=O on the boundary 

C o m p u t a t i o n  of  the  gradients  If U and p are in relation with the state 
equation, denote by U = U(p) the solution to 

{ M(pi)Ui=Si,~c(Ssinc, t) in the volume 
B(pb)Ub=O on the boundary 

The Lagrangian is then simplified in 

L(p, U, U*) = j(p) 

Computing the gradients of j,  for the parameter p, we have 

OL OL '5 "~ Vj(p)@= ~pSp+ ~ U  p) (p,U,U*) 

Now, with the relation 

cOL(p, U, U*) _ 0 
OU 

gradient formulas are obtained 

v j _  0 
~- L(p, U, U*) 

Vp 
OM U = < U*, -~p > 
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v j  OM 
= < S ; , - a - - - g ~  > 

Vp~ 

Vj  OB 
= < > 

Vp~ 

T h e  O p t i m i s a t i o n  p r o c e s s u s  With the initial guess Po, a sequence of 
parameters,  converging towards the optimal Popt is built, with the properties 

J(Pn+l) < J(Pn) Vn 

At each iteration, the algorithm needs : 

- A descent direction dn verifying 

< VJ(pn),dn > <  0 

- A positive An solution to 

An = min J(Pn + Adn) 
A>o 

- the following parameter is computed by 

Pn+l = Pn + Andn 

For a Quasi-Newton method, a choice for the descent direction dn is 

dn = -HnVJ(pn)  

where H~ is a definite positive matrix, approximation of the hessian of cost 
function. The optimizor used for our numerical computations is M2QN1, 
developped at INRIA Rocquencourt by Lemarechal (1976). 

1.3 P a r a m e t e r s  sens ib i l i t y  s t u d y  

This part  is devoted to the stability analysis for the non linear least square 
solution. The rate of convergence for Newton method is linked with the Iin- 
earized operator  boundedness. Thus, supposing that  Yo = Apo, and lineariz- 
ing around P0, one gets 

P = P0 + 5p 

Y = Y0 + 5y 
i 

A(p) ..~ A(po) + Ao(Po)Sp 
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We obtain the associated linearized minimization problem 

j , (Sp) = qmi~ j (q )  = [ I A ' o ( q )  - , yll (1) 

where K is a subset of X 

J * ! 
Let A 0 the adjoint operator of A0, then 

t * ! 

H (po ) = A o A o 

is a linear, compact, self-adjoint operator. 
Denote by 5p = (A+)Sy  the solution to (1). A + is called the pseudo-generalized 
inverse operator. The operator A + is not in general bounded and by hessian 
singular values analysis, the problem can be ill-conditionned if the condition 
number x(A'o) = /~maz is much more greater than one. 

)~mln  
Therefore, regularization method have to be applied for stability problems, 
and a priori information is incorporated in the cost function. Let R~ be the 
Tichonov bounded regularization operator of A + 

R~ = (A'o*A' o + a I d ) - l  A'o * 

The best choice of the a parameter must realize a compromise between sta- 
bility and precision and regularization techniques have to be understood in 
connection with stochastic links and a priori information. 

2 A p p l i c a t i o n  t o  a m o n o d i m e n s i o n a l  e l e c t r o m a g n e t i c  

p r o b l e m  

2.1 Theore t ica l  p rob lem 

Non  dispersive m e d i u m  The governing time domain Maxwell equations 
for electromagnetic fields are 

O E  O H  I + = o 
"~ O H  - -  O E  
l #-5i-~-~5E = 0  

with initial conditions for E and H, and with plane wave excitation. 
In the way to have a well-posed inverse electromagnetic problem similar geo- 
physics, it is better to change the depth z variable into the traveltime variable 

= fo (ep(z ) )2  dz. x(z), such x ( z )  = f o  z 1_ 

Tile impedance ~(x) is defined by ~(x) = (a~(z))½ and the reflectivity by 
r ( z )  - -  1 0 1 n ~ / ~ ( z )  

- -  ~ 0 x  

We refer to Symes (1983,1986) for the homeomorphism property of the for- 
ward map concerning ~?(x) parameter, and also diffeomorphism property of 
the forward map concerning r(x) ,  for a Dirac excitation f ( t )  = 5(t) ,  and for 
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the consequences about the inverse problem. 
Concerning reflectivity equation, some analytical methods (Invariant Embed- 
ding equations) are used by Kristensson (1986) to find r(x) and for lossy elec- 
tromagnetic medium, we refer to Chaderjian and Bube (1993), and Marechal 
papers (1986), where one of the parameter is fixed (for exemple the lossy 
term a(x)), and the other (impedance) is the reconstructed parameter. 

Linear dispersive m e d i u m  For a linear polarizable medium, we have the 
splitting D(z, w) = e(z)E(z, ~)+P(z ,  w) with P being the polarization vector 

P = P(z, w) - Q(z, w) 
R(z,w) E 

and Q et R are two polynomials z dependant coefficients in iw. With respect 
to time domain formulation, the general formulas that  link Partial  Differential 
Equations (PDE) with Ordinary Differential Equation (ODE) can be written 

e ( z )  oH o v  -gF -- -~z -- -3F = 0 
• O H  - -  OE 
tt - ~  -r -O- i- 0 

R(z, Ot) = Q(z, Ot)E 

In the litterature, inverse problems for dispersive medium are treated by 
Weston (1972) with the Invariant Embedding equations model, but stability 
results have to be proved. Particular linear dispersive medium are Debye law 
for atomic dipolair relaxation, Lorentz law and Drude law. 

2.2 Optimal control algorithm for a n o n  dispersive medium 

Using the previous notations, and assuming that  # = 1, we define: 
The control parameter p = (e, a), the state variable (direct variable U = 
(E, H)),  the adjoint variable (dual variable Ua = (Ea, Ha), the incident ex- 
citation source at point 6sine, at time t Sinc(6sinc,t) = (--j~,jm) and the 
Maxwell differential operator 

+ o ) 
M=, 0_% Ot 

We also use this formalism for dispersive medium, and gradient formulas will 
be given. 

2.3 Numerical validation 

To illustrate an exemple of reconstruction with real datas, a numerical ap- 
plication with a lossless three-layers dielectric ( Kevlar (c = 3.5), Polystyren 
(c = 1.01) and Lecoflex (c = 2.9)) is presented. The lenght of each layer is 

fixed. 
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Measurements are done in the anechoic chamber with a Radar covered range 
frequency band from 2 Ghz to 18 Ghz. A frequential reflection coefficient 
versus frequency is then constructed in phase and a discrete inverse Fourier 
transform is carried out to produce real impulsionnal datas (the frequential 
window is enlarged to respect Shannon's sampling theorem for the time do- 
main datas, then a conjugation and a smoothing procedure are employed) . 
At the end of minimization procedure (15 iterations), synthetic impulsionnal 
datas have a good agreement with experimental datas and the three param- 
eters el, c2,63 are well reconstructed. 
Sensibility results for parameters will be shown and the linear locally com- 
portment of U(p) (see Alestra, 1994) will be presented. Furthermore, the 
optimal control approach is used to determine the material parameters of 
the dispersive slab's layers that minimize the reflection coefficient (optimiza- 
tion) over a specified range of frequencies and given the total thickness of the 
layers. 

3 A p p l i c a t i o n  t o  a b i d i m e n s i o n a l  e l e c t r o m a g n e t i c  

p r o b l e m  

3.1 Theoretical problem 

Maxwel l ' s  equa t ion  General Maxwell equations are : 

a t H + r o t E  = - J m  
-60 tE  + rotH = Je -= ,Is + Jc 

Initial and boundary conditions are added to close the system. Furthermore, 
Jm is the fictive magnetic current, J~ J8 the fictive eletric current, J8 the 
source current and J~ the conduction current. 

Near  field-Far field mapp ing  Of particular interest in electromagnetism 
are far fields measurements. Far fields are given from the knowledge of near 
fields by an integral representation: Stratton-Chu formulas. Electric currents 
Je = n A H and magnetic ones are computed by the FDTD code on a equiva- 
lent Huyghens surface S. Then we denote by Mo(xo, y0, z0) the source point 
on S, and M the observation point. Then the 3D far field representation is 

E(M, t) = / f(M0, t*)dMo 
J 8  

with the 3D retarded potential function f given by 

1 d 
4~Rf(Mo, t) = - 1-~-divJe (Mo, t) + - u  A ~ Jm (Mo, t) 

goC C 
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where u is the unitary vector in the direction M M o .  
The frequential relation 

E~D = \ jw / E3D 

based on Green's kernel and available for R > >  1 where R = d(M0, M)  will 
be used to compute quickly the 2D far field. 

3.2 2D o p t i m a l  c o n t r o l  a l g o r i t h m  

State variable and adjoint one are the same as 1D case, while Maxwell Dif- 
ferential operator  is slightly modified 

( C ~  + ~ --rot) 
M = k rot  

• With the notations of part  1.1, F is the near field-far field integro-differential 
mapping .  Its corresponding adjoint operator  F* (far field-near field integro- 
differential mapping) will be introduced. 

3.3 N u m e r i c a l  val idat ion 

An explicit and order two leapfrog scheme is employed in the F D T D  code 
(see Yee (1966) and Tafiove (1992)). For numerical dispersion and stability 
and moreover for Absorbing Boundary conditions, we refer to Joly (1987) 
and Collino (1992). Those conditions are in fact expressed by a "Dirichlet- 
to Neumann" T operator,  described by the relation Onu + Tu = 0 on the 
boundary. 
A numerical illustration of the method is the case of an absorbing medium 
reconstruction fixed on a perfectly metallic 2D profile. The code (see Duceau, 
1993 and 1996) was implemented on a parallel computer.  

4 A p p l i c a t i o n  t o  a n  e l e c t r o m a g n e t i c  d o u b l y - p e r i o d i c  

p r o b l e m  

4.1 T h e o r e t i c a l  p r o b l e m  

By assuming periodicity, a group of well-defined difficulties must be solved.  
In fact, the diffraction due to the periodic system must be taken into account 
(see Petit ,  1980). This effect causes the appearance of waves propagating 
in preferential directions and apparition of evanescent modes determined by 
the elementary cell size and by the incident wave frequency. The problem 
is studied on a elementary cell and periodicity conditions are employed to 
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simulate the whole structure periodicity (see Delort et Duceau, 1993). 
For a pseudo-periodic incident field, such 

Einc(X, y + dl, z + d2) = eikydleikzd2 Einc(X, y, Z) 

with d =(d l ,  d2) y e t  z being the grating steps and k = (kx, k u, kz) the wave 
number, the scattered field is pseudo-periodic (with the same pseudoperiod- 
icity) and Rayleigh expansion can be obtained on a tranverse plane (parallel 
to the grating plane) x = x8 

x 
E(x,  t + 7)  = Epq(x, ) 

P,q  

and Fourier coefficients are given by 

1 

• Normal incidence will be used in the FDTD code• 

4.2 Numerical  validation 

Reconstruction results of dielectric inclusions in substrate for doubly periodic 
grating will be given, for Mode 00 observation datas. Then, informations 
about  other modes will be progressively incorporated• 

5 A p p l i c a t i o n  t o  a n  e q u i v a l e n t  i m p e d a n c e  o p e r a t o r  
r e c o n s t r u c t i o n  

5.1 Theoretical problem 

We consider two electromagnetic mediums• The aim of the problem is to 
modelize the 2nd medium by an equivalent surface condition (impedance 
condition). The 2nd medium is not described in the volume. Moreover, for 
complex medium, those conditions are used as equivalent classes (in an elec- 
tromagnetic equivalent reflection sense) for complex materials• On the in- 
terface between the two medium, we have the exact frequential condition, 
linking the traces E and H.  

[A] Etan  + [ B ] n  A H t a n  ~- 0 

A and B are two frequential operators depending on ~, co, k. 
In t ime domain, this condition is described by a Dirichlet to Neumann map 
linking the tangential traces of E and H,  with the non local space t ime Z 
operator• 



364 

In a practical standpoint, as for the CLA, the exact Z operator is approxi- 
mated for high frequencies, by Zap p in the way to have a maniabte numerical 
condition. Impedance operator issued from Pad@ developpment are obtained, 
and Kreiss techniques are used to prove stability. 

5.2 Numer ica l  val idat ion  

An equivalent impedance condition is searched for a grating periodic medium 
with dielectric and conductive inclusions. The first mode 00 (specular mode) 
is observed. The reflection coefficient depends on the frequency range of eigen- 
modes. Therefore, for each frequency range, an infinite equivalent medium is 
searched and results of reconstruction will be detailed. 

6 C o n c l u s i o n  

In this paper, we showed a generic optimization technique applied to different 
electromagnetic problems. First, in 1D, we have systematically studied the 
models and analyzed the measurements, as well as the parameters sensibilitty 
and regularization techniques. 
Therefore, "real reconstructions" are available from the knowledge of impul- 
sive datas, after filtering and treating the frequential experimental measure- 
ments. 
Then the 2D problem was overviewed. The classical measurement datas were 
specified (Far field) and therefore the inverse problem goes on. Preliminar 
results on parallel computers showed good efficiency for the algorithm. 
Next section, periodic grating problem was studied, and almost, classical ob- 
servation datas (propagative eigenmodes). Reconstruction for dielectric and 
conductive inclusions for periodic gratings are simulated. 
The last section concerned the equivalent impedance reconstruction for a 
complex medium (an approximation of the exact impedance operator). After 
the mathematical model choice, we established that a reflection coefficient 
piecewise evaluation was possible, for a periodic grating. 
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v i a  t h e  I C B A  
T. Scotti 1, A. Wirgin 1 

Laboratolre de M~canique et d'Acoustique, 31 chemin Joseph Aiguier, 13402 Mar- 
selUe cedex 09, France 

A b s t r a c t .  This work deals with the inverse problem of the determination of the 
shape of a generally non-spherical penetrable 3D body from the way it scatters 
incident sonic plane waves. The measurements of the diffracted field are matched 
to a partial wave representation involving unknown coefficients. Rather than solve 
for these coefficients (i.e., forward problem) by invoking the transmission condi- 
tions, it is supposed that they are locally those of the penetrable sphere of the 
same composition (as that of the given body) which intersects the given body at its 
boundary (this is the so-called ICBA, i.e., Intersecting Canonical Body Approxima- 
tion). These coefficients are known explicitly to within a single parameter which is 
none other than the length of the position vector joining the origin of the laboratory 
system to the given point on the boundary of the body. By varying the locations of 
the measurement point and corresponding boundary point, one generates a discrete 
form of the parametric equation of the boundary. 

1 Problem ingredients 

The measured (not necessarily far) field is known in both phase and am- 
plitude, on a part  or on the totali ty of a sphere completely enclosing the 
body. The scattering surface is acoustically penetrable.  The  space /2o (/21) 
surrounding (within) the body is filled with a linear, homogeneous, isotropic, 
non-absorbing (non-absorbing) material.  The incident monochromat ic  field 
is that  of a plane longitudinal wave. The unknown body is bounded by the 
surface F.  The (O~yz) cartesian coordinate system and the (r, 0, ¢) spherical 
coordinates (where O is assumed, for convenience, to be located within F)  
will be used. The e -i°'* t ime dependence is omitted,  kV i will represent the 
incident plane wave field, ~0 = ~ i  + k~a (~pa the diffracted field) and ~pl 
the total  fields respectively in /20 and /21- ,p0 and ~pl :1) are locally square 
integrable in f20 and /21, 2) are governed by the Helmholtz equations : 

( A + k ] ) ~  j = 0  in /2i; J = 0 , 1  , (1) 

with kj the (known) wave number in /2j, 3) satisfy the outgoing wave con- 
dition at infinity (as concerns ~d) and 4) obey the transmission boundary  
conditions on F: { C~Ok~°/r = al~z/r 

/ 00  0/r , (2) 
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Fig. 1. scattering configuration 

with a0 ,  flo, a l ,  fll known constants. For the inverse problem, gr0 is supposed 
to be known (i.e., measured or simulated) at given points on a spherical sur- 
face Fb (whose radius is rb > e = M a z [ p ( 0 , ¢ )  ; 0 < O < T r  ; 0<_¢<27r] ,  
with p(O, ¢) the parametric equation description of F ) enclosing the body. 
Thus, given ~0 on Fb, ~ ,  ¢~, (incident angles), kj, aj, ~j; j = O, 1, the 
objective is to fully or partially, determine the bounding curve F of the body. 

2 F i e l d  r e p r e s e n t a t i o n  

It can be shown (Jones and Mao [1]), regardless of the shape of the scattering 
body, that the total velocity potential is expressible in 
£2+----{r > f ;  0 < 0 < T r ;  0 < t g < 2 7 r } b y :  

~°(r, 0, ¢) = ~ (r ,  0, ¢) + ... 

. . .  + ~ ~ [A=~cos(m¢) + B.~sin(m@Py(cosZ)h.(~o~) (3) 
n----O m----O 

with 
O O  

~'(~,  o, ¢) = ~ ( 2 , ~  + 1)i~... 
n = O  

~ o  ( ~ -  '~)! ¢'))p$(cos~)p:~(cos¢)j.(ko~) ... ~ , ~ ~ c o s ( m ( ¢ _  
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where j,~ and hn are the n-th order spherical Bessel and Hankel functions 
of the first kind respectively, Pn m the Legendre polynomial, e m =  1 for m 
0 ; -- 2 for other m. Similarly in 
£2 o = {r < r_= i i n [p ( t~ ,¢ ) ;O  < t~ < r;O _< ¢ < 2~r];O _< t~ < ~r;O_< ¢ < 2r}  

~ ( r , t ~ , ¢ )  = ~ ~ [Cnmcos(m¢)+ D,~,nsin(m¢)]P~m(cosO)jn(ktr) (4 / 
~----0 ~ , = 0  

3 Preliminary direct problem 

3.1 P a r t i c u l a r  ease  o f  a s p h e r e  w i t h  c e n t e r  a t  t h e  o r ig in  

Let the body be a sphere of radius a. Introducing Eq.(3) and Eq.(4 / into 
Eqs.(2), projecting successively on {cos(#¢)P~(cos ~)sin tg} and on 
{sin(/~¢)P~(cos tg)sin t g},  with v = 0...N,/~----0...v, gives: 

~°(r ,  t~, ¢) = ~ ' ( r ,  tg, ¢) + E E,~,~(a) cos(rn(¢ - ¢ ' ) )P~(cos  O)h,~(kor) , 
n = 0  n'~.:O 

E,~m(a) =- a,~,,~i ~oalkoj,~(k~a)j~ (koa) - ~laok~j~ (k~a)jn(koa) 
aol3tklj~(kla)h,~(koa) - alt3okoh~(koa)j,~(kla) 

(2~ + ~ ( ~ -  m)!e:(cos o ~) ~ : 1)~ ~ " ~ m ) !  

where j~(z)  = djn/dz,  h~ = dh ,Jdz .  

(5) 

(6) 

(7) 

3.2 G e n e r a l  case  o f  a 3D b o d y  o f  a r b i t r a r y  s h a p e  

The process is much the same as above, except that  now the solution of the 
forward problem (i.e. A,~m and B~m) is not known. The following approxima- 
tion is made (Scotti and Wirgin [211 : if the body is not much different from 
a sphere, it is assumed that, in any scattering direction ~q, ¢ v  the field can 
be approximated by Eq.(5) wherein E,~m is that  of an "equivalent" sphere 
with center at the origin and radius ~ equal to the local radius of the body : 
p(Oq, CP). The exact expression Eq.(3) is now replaced by the approximation : 

~0 (r, 0q, ¢~) ~ ~ (r ,  0q, ¢~) + . . .  

. . .  + ~ E~m(o(Oq, ~ ) /cos  m(¢  - ~/e~(cosO~)h,~(k~) , (S) 
n---0 m = O  

where the E~(p( tgq ,  ~/¢~)) are given by Eq.(6 / with a replaced by p(~q, Cv)- 
This procedure is called the "Intersecting Canonical Body Approximation" 
(ICBA, Scotti and Wirgin [21/. 
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4 I n v e r s i o n  s c h e m e  

For any particular scattering direction, the expression of ~p0 given by Eq.(3) 
(in which the infinite series has been reduced to a finite series for computa- 
tional purposes) is matched to the "given" data  ~p0 : 

~¢0 (7,b, oq, ~p) __ [~i(l,b, oq, ~p) + ... 

. . .  - o. (9) 
n ~ 0  ~ ' ~ 0  

E,~,~ is known analytically from Eq.(6) to within one parameter, ~ ,q  = a, so 
that  Eq.(9) (non linear in term of ¢ 'q )  enables one to determine ~P,q. There- 
fore the inverse problem reduces to : 1) determining, for each scattered direc- 
tion (0 q, ~ ) ,  the radius 7/of a sphere which gives the same diffracted field as 
the measured field and 2) identifying ~/with the local radius ~ ,q  = p(Oq, dff) 
of the body. If this is done for a set of measurements in an angular sector (or 
all around the body) then the discretised form of the shape function p(Oq, c/~') 
is thereby partially (or totally) obtained. 

R e m a r k s  
1) If L measured samples of the diffracted field are taken at angles (oq, ~ ) ,  a 
system of L uncoupled non-linear equations in L unknowns (one equation and 
one "radius" ~7 p,q for each scattered direction) must be solved; 2) ~ 'q  should 
be real, but, because of errors in using the local canonical body approximation 
and limiting the series to a finite number of terms, the solution r f  ,q of Eq.(9) 
is, in fact, complex; 3) only the real part of ~/is kept to test the results; 4) 
for each equation, the solution is not unique so one profile among many has 
to be chosen. 

5 P o s t  p r o c e s s i n g  

We first reconstructed the most regular profiles, i.e., the ones for which the 0 
and ~b derivatives are small, then eliminated profiles for which the real part 
of ~P'q is negative or larger than rb, and finally chose the one corresponding 
to the smallest imaginary part of f f p(O, ~)dOdq3/ f f dOd~. 

6 N u m e r i c a l  c o m p u t a t i o n ~  r e s u l t s  a n d  c o n c l u s i o n  

6.1 S u b r o u t i n e s  

The spherical Bessel and Hankel functions were computed by means of the 
IMSL (IMSL [3]) subroutines DBSJS and DBSYS. The non linear equations 
(Eq.(9)) were solved by means of the IMSL subroutine DZANLY. The latter 
computes the complex zeros of a complex function by the Mllller method. 
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6.2 P a r a m e t e r  c h o i c e s  a n d  r e s u l t s  

We chose : k0 = 1, kl = 0.5, a0 = a l  = 1,/3o =/31 = 1.5, measurements in 
the near field (rb = 2,200 uniformly distributed scattered directions around 
the body),  N = 7, and 0 i = ¢i = ~'/3. The body is an ellipsoide of semi axis 
a= = 1.2, % = 1, az = 1. An example of the results of the computations are 
given in Figs.(2). 
The computations took :  for the direct problem, 8h 33ran; for the inverse 
problem, 16s. The direct problem was solved (to compute ~0 on Fb) by means 
of the Rayleigh-Fourier method (Bolomey and Wirgin [4]). 

6.3 C o n c l u s i o n  

The local canonical body approximation for the forward problem easily en- 
ables the location and reconstruction of the shape of 3D bodies at low cost 
with reasonable accuracy, even for bodies whose shape is quite different from 
that  of a sphere. 
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